Recent opportunities in transfer reactions O. Sorlin (GANIL)

Modifications of shell gaps & SO splittings

Moving away from stability explore various facets of nuclear force

Explore effects of three body forces, Tensor and two-body spin orbit

The ³⁴Si bubble nucleus Link to physics of SHE ?

Use of transfer reactions Analysis/Interpretation/consequences

> sdpf-U interaction F. Nowaki and A. Poves PRC (2009) NA Smirnova et al. PLB (2009)

> > Ecole Joliot Curie Octobre 2012

Glacier de Saint Sorlin

How the ⁴⁸Ca nucleus is produced in the universe ? Neutron capture beta-decay process The role of the N=28 shell closure Beta-decay studies suggested the vanishing of N=28. PhD IPN Orsay 1991 Stay in Orsay up to 2004 At GANIL since then

No sabbatical year so far....

Further studies established the progressive erosion of N=28 From the doubly magic ⁴⁸Ca, vibrational ⁴⁶Ar, shape coexistence in ⁴⁴S and deformation in ⁴²Si Use of various experimental techniques at GANIL (beta-decay, isomer decay, transfer, in-beam)

Study of other shell closures N=14,16 and N=40 ...

Towards a global understanding of which parts of nuclear force led to significant shell modifications (tensor, spin orbit)

Better understand the astrophysical r process -> production of ½ heavy elements

'*May the force be with you*' Obi-Wan Kenobi 'Star Wars'

Recent opportunities in transfer reactions O. Sorlin (GANIL)

Modifications of shell gaps & SO splittings

Moving away from stability explore various facets of nuclear force

Explore effects of three body forces, Tensor and two-body spin orbit

The ³⁴Si bubble nucleus Link to physics of SHE ?

Use of transfer reactions Analysis/Interpretation/consequences

> sdpf-U interaction F. Nowaki and A. Poves PRC (2009) NA Smirnova et al. PLB (2009)

> > Ecole Joliot Curie Octobre 2012

Setting the scene...

Basic features of transfer reactions

Which transfer reaction, for what ?

Choose the appropriate probe to determine occupancies / vacancies of orbits Locate the energy levels carrying the largest SF -> study evolution of shell gaps Learn about the role of correlations \rightarrow dilution of the Fermi surface ?

Basics features of a transfer reaction

Quantified energies -> shell structure $abla_p$ Cross section scales with vacancy (2J+1) C²S⁺ of the states ->ADWA calculations Angular distribution typical of the transfered angular momentum L Polarized beam/target to obtain info on J values. Use appropriate momentum matching

Valence neutron orbits in ⁴⁸Ca

In a (d,p) reaction, we probe the vacancies of the states. There is no vacancy left for the $f_{7/2}$ orbit \rightarrow closed ⁴⁸Ca core Few fragmentation of the p and f states. The $g_{9/2}$ state is more fragmented.

2.28

3.945

0

0.05

1.03

0.95

p_{1/2}

f_{5/2}

The 'Fermi surface' of ⁴⁸Ca derived from transfer reactions

⁴⁸Ca(d,p)⁴⁹Ca

E _{level} #	J ^{π<u>@</u>}	L <u>@</u>	C ² S ^{&}	
0.0 ^a	3/2-	1	0.84 12	
2021 ^a	1/2-	1	0.91 15	
3357	(9/2+) ^b	(4)	(0.0037)	
> 3586	5/2-	3	0.11	
3888	[9/2+,3/2-]	[4,1]	<u>d</u>	
→ 3993 ^ª	5/2-	3	0.84	
4018	9/2+ ^e	4	0.14	
4069	3/2-	1	0.13 2	
4261	1/2-	1	0.12 1	
4416	5/2+	2	0.039	
4617 ^g 6				
4767	(5/2+)	(2)	(0.021)	
4788 ^g 6	[9/2+]	[4]	h	
4887	9/2+	4	0.020	
5314 5378	9/2+	4	0.083	

From ENSDF evaluation

ν

- Optical Models lead to about 20% uncertainty
- Quenching of the C²S due to short and long range correlations in the nucleus

Quenching of occupancy values

'At any time only 2/3 of the nucleons in the nucleus act as independent particles moving in the nuclear mean field. The remaining third of the nucleons are correlated' Pandharipande et al. Rev. Mod. Phys. 69 (1997) 981

⁴⁰ Ca(d,p) ⁴¹ Ca
$\mathbf{E_{level}}^{\#}$ $\mathbf{J}^{\pi @}$ $\mathbf{L}^{@}$ (2j+1)C ² S
0.0 7/2- 3 6.82
1942.7 3 3/2- 1 2.14
2009.8 8 $3/2+$ 2 $0.26^{a} \longrightarrow$ Not fully occupied
2462.6 3 3/2- 1 0.67
2574.2 <i>10</i> 5/2- 3 0.03 2606.5 <i>11</i> (2) (0.03)
$2670.5 11 1/2 + 0 0.03^{a}$
2884.2 8 9/2+ 4 0.12
2959.8 7 (3) (0.06) 3050.4 23
3131? ^c 5 3200.4 5 9/2+ 4 0.21

from ENSDF evaluation

....

Particle strength (d,p): Uozumi et al. NPA 576 (1994) 123, Uozumi et al. PRC 50 (1994) 263

Evolution of the N=28 gap in the Ca isotopic chain

Mean-field approach

Increase of spin orbit (SO) shell gaps in the Ca and O chains

The role of three body forces to create SO shell gaps

J. Holt et al., 2012 J. Phys. G. 39 085111

Realistic two-body forces could not account for the increase of SO shell gaps at N=28

> Need three body forces

> Same holds true for the N=14 gap

> What about N=50 ?

The size of the gap at N=40 constraints the one at N=50.

Spin J

Monopole Very powerfull to predict structural evolution ...

Too much monopole can get you dizzy !

⁶⁸Ni(d,p) reaction in inverse kinematics

RESULTS FOR ⁶⁸Ni(d,p)⁶⁹Ni

The role of three body n-n forces to create SO shell gaps

Increase of ALL SO shell gaps from n-n interactions by about 2.7 MeV !!! A relatively large N=50 gap is expected in ⁷⁸Ni. Predictibility for other high j orbits -> h $_{11/2}$, i $_{13/2}$

Studying proton-neutron forces in the N=20 isotopic chain

Which components of the 2 body proton-neutron interactions act on the N=28 shell gap?

Which shell evolution for N=28 and p3-p1 SO splitting ?

Occupancies of proton orbits in ⁴⁰Ca and ³⁶S

Evolution of the N=28 due to proton-neutron forces

Smirnova et al 2010 Phys. Lett. B 686 109

End of Lecture I

The roles of nuclear force

$$V_{nucl} = V_{monopole} + V_{correlations};$$
 $V_{monopole} = V_{central} + V_{tensor} + V_{SO}$

Far from stability we access unexplored parts of the nuclear force:

50

50

- -Nodes in wave function (radial overlap)
 -Spin orientations
 -ΔL angular momentum difference
 -Isospin dependence
 -Drip line effects
- Derive in-medium from bare forces ?
- Study specific parts of force
 - to reach
- Predictibility in other regions

Superheavy nuclei

Summary of previous highlights

The role of three body n-n forces to create SO shell gaps

Increase of ALL SO shell gaps from n-n interactions by about 2.7 MeV !!! A relatively large N=50 gap is expected in ⁷⁸Ni. Predictibility for other high j orbits -> h $_{11/2}$, i $_{13/2}$

Proton-neutron forces involving the d_{3/2} proton orbit

No change in p SO splitting THE N=28 gap no longer exists in ³⁷S !!!

Which forces below ³⁶S?

Occupancies of proton orbits ³⁶S

Very likely that the $s_{1/2}$ orbit is empty in ³⁴Si. Should be proved -> PHD A. Mutschler (IPN/GANIL)

EXPERIMENTAL SETUP

EXPERIMENTAL RESULTS ³⁴Si(d,p)³⁵Si

1/2-

3/2-

7/2-

[–]Εγ [keV]

³⁵Si

Proton-neutron forces involving the s_{1/2} proton orbit

Evolution of SPE from two-body SO interaction

Reduction of $vp_{1/2}$ - $p_{3/2}$ splitting between ³⁷S and ³⁵Si and after removal of \approx 2 protons* from $\pi ds_{1/2}$ *1.45 according to shell model (F. Nowacki)-> to be confirmed experimentally

Increase of the SO splitting due to the two- body SO interaction

Bubble nucleus and the spin orbit interaction in mean field (MF) theories

Central proton density depletion in ³⁴Si as the $s_{1/2}$ is no longer filled

Same global picture in shell model and Mean field calculations

Correlations reduce the amplitude of the bubble

Spin orbit interaction depends on the Derivative of the density MF models

How can we probe its reliability?

The spin orbit (SO) interaction in Mean Field models

in extreme systems, not studied so far

Spin orbit interaction and superheavy elements

Modification of the SO splitting in a bubble nucleus

Anticipate consequences for drip line and SHE nuclei ...

Neutron proton forces below ³⁴Si –

How to learn on the physics of the island of inversion ?

Proton-neutron forces involving the $d_{5/2}$ proton orbit

Is the N=28 gap further decreasing when removing protons in the $d_{5/2}$ orbit ?

Study of the ²⁵Ne via²⁴Ne(d,p)²⁵Ne

Location of fp states using ²⁴Ne(d,p)²⁵Ne

²⁴Ne 10⁵pps SPIRAL Protons -> TIARA Gammas -> 4 Exogam Nuclei -> Vamos

VAMOS Projectile-Like ID

Location of fp states using ²⁴Ne(d,p)²⁵Ne

Proton-neutron forces involving the $d_{5/2}$ proton orbit

The N=28 gap decreases further by 2MeV \longrightarrow swapping between the $f_{7/2}$ and $p_{3/2}$ orbits

The $p_{3/2}$ orbit should lie right above the $d_{3/2}$ in the Ne-O chains See Nakamura et al. PRL 103 (2010), Wimmer et al. PRL105 (2010)

Proton-neutron forces applied to the N=28 shell closure

 ^{28}O

Applying the same forces, the N=28 shell gap should be reduced by about 1.4MeV in ⁴²Si and further reduced below
-> quadrupole correlations further increase the onset of deformation

Proton-neutron forces applied to the N=28 shell closure

From spherical to deformed shapes at N=28

New generation detectors for direct reaction studies

Conclusions

Selected experimental data spanning over large N/Z enable to probe major shell changes such as reduction of N=28 shell gap, and p SO splitting

Transfer reactions allow to follow the evolution of shell gaps and their origin from nn or pn interactions.

Decomposition of the monopole terms reveal which parts of the interaction play decisive roles, i.e. central, tensor, two-body SO

³⁴Si bubble nucleus used to determine two-body SO interaction to test the validity of mean field models

²⁴Ne used to reveal a total disruption of the N=28 gap further from stability

Expected increasing role of the neutron $p_{3/2}$ orbit near ²⁸O

Similar forces expected at play in other regions of the chart of nuclides

Sorlin and Porquet arXiv:1209.3377 (2012) for more details

Lecture ends here

Proton-neutron forces applied to the N=28 shell closure

Global reduction of the N=28 shell gap Induced by nuclear forces

Favors quadrupole excitations -> deformation

Gaudefroy et al. PRL (2006)- ⁴⁶Ar Force et al. PRL (2010)- ⁴⁴S Bastin et al. PRL (2007) ⁴²Si Baumann, Nature (2007) ⁴⁰Mg

Probing the occupied proton orbits in ⁴⁸Ca and ⁴⁰Ca

 Use of transfer (d,p) reaction with ⁴⁶Ar beam Collab. IPNO Orsay, GANIL,CEA saclay
 L. Gaudefroy et al. Phys. Rev. Lett. 97 (2006)

SPEG : Energy loss spectrometer : **recoil ion** identification→transfert-like products

COMPARISON WITH SM CALCULATIONS

TABLE I: Experimental energies in keV (E^*) , angular momenta (ℓ) , vacancies $(2J + 1)C^2S$ of the levels identified in ⁴⁷Ar are compared to SM calculations.

	Experiment		Shell Model				
	E^*	l	$(2J+1)C^2S$	E^*	J^{π}	$(2J+1)C^{2}S$	
	0	1	2.44(20)	0	$3/2^{-}$	2.56	n n statas
	1130(75)	1	1.62(12)	1251	$1/2^{-}$	1.62	$\rho_{1/2}, \rho_{3/2}$ states
	1740(95)	3	1.36(16)	1365	$7/2^{-}$	0.8	
	2655(80)	3,(4)	1.32(18)	2684	$5/2^{-}$	0.78	f
c	<3335(80)	$_{3,(4)}$	2.58(18)	≤ 3266	$5/2^{-}$	2.76	5/2
J n	3985(85)	4,(3)	3.40(40)	-	-	-	
	4790(95)	-	-	-	-	-	
	5500(85)	4	2.10(10)	-	-	-	
	6200(100)	-	_	-	-	-	

From SPDF-U (Nowacki), TBME at N=21

->Fine tuning of monopoles to reproduce the main part of the experimental SPE strength

-><u>Assume</u> that the treatment of correlations is correct, check for (d,p) and (p,d)

Deduce the change in SPE's between ⁴⁹Ca to ⁴⁷Ar

THEORY : Signoracci and Brown ; Gaudefroy, ...Nowacki et al PRL 2007

Variation of single particle energies from tensor forces

-From ⁴⁷Ar to ⁴⁹Ca, 2 protons added to $d_{3/2}$ and $s_{1/2}$ equiprobably, i.e. 1.33 ($d_{3/2}$), 0.66 ($s_{1/2}$)

-The $\pi d_{3/2}$ acts differently on $\nu f_{5/2}$ and $\nu f_{7/2}$ orbits \rightarrow tensor forces ?

Evolution of SPE's from tensor part of the proton-neutron interaction ?

Expect a change of the f7-f5 SO splitting by 2MeV between ⁴¹Ca and ³⁷S, NOT AS LARGE, WHY ?

The f5 orbit lies in the continuum in ³⁷S, then the tensor-induced mechanism may be perturbed...

derived from experimentally-constrained monopole variations Including ⁴⁶Ar(-1n) Gade et al. PRC 71, 051301 (R) 2005

-A shrink of neutron SPE's is occurring gradually when N>>Z
 > Enhanced collectivity expected
 What happens when drip-line is reached ?
 > determine properties of proton-neutron nuclear forces there

The spin orbit interaction at the drip line

⁴⁰Ne

MF and RMF calculations predict different behaviours of the SO interaction when reaching drip lines

 \rightarrow SO splitting weaker in RMF (comes from isospin dependence)

 \rightarrow Would affect the evolution of shell gaps differently

 \rightarrow Consequence for the r process nucleosynthesis

G. A. Lalazissis et al. Phys. Lett. B 418 (1998)

