Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future

Spectroscopy of Very Heavy Elements

Paul Greenlees

Department of Physics University of Jyväskylä

École Joliot Curie 30.9.-05.10.2012 Fréjus, France

erc

In-Beam Spec

ec

omerism

Future

What is the link?

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Outline					

- 1 Introduction
- 2 Experimental Approaches
- 3 Alpha Decay (Fine Structure) Spectroscopy
- In-Beam Spectroscopy
- 5 Structure of High-K States
- 6 Future Perspectives

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Outline					

- 2 Experimental Approaches
- 3 Alpha Decay (Fine Structure) Spectroscopy
- In-Beam Spectroscopy
- 5 Structure of High-K States
- 6 Future Perspectives

Experiment

Alpha Spec

In-Beam Spe

K

omerism

Future

What is the structure of SHE?

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Outline					

- 2 Experimental Approaches
- 3 Alpha Decay (Fine Structure) Spectroscopy
- In-Beam Spectroscopy
- 5 Structure of High-K States
- 6 Future Perspectives

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Outline					

2 Experimental Approaches

3 Alpha Decay (Fine Structure) Spectroscopy

- In-Beam Spectroscopy
- 5 Structure of High-K States
- 6 Future Perspectives

Decay Spectroscopy - Case Study ²⁵⁵No

M.Asai et al., PRC **83**, 014315 (2011) and ARIS2011

FIG. 2. Two-dimensional plots of α - γ coincidence events: (a) prompt coincidence events detected within the time interval

Paul Greenlees (JYFL, Finland)

Spectroscopy of VHE

Future

Alpha Spec

In-Beam Spec

Future

Decay Spectroscopy - Case Study ²⁵⁵No

M.Asai et al., PRC **83**, 014315 (2011) and ARIS2011

FIG. 6. α fine-structure spectrum of ²⁵⁵No measured during the period of 90–360 s after the ends of the source depositions.

I

Decay Spectroscopy - Case Study ²⁵⁵No

FIG. 6. α fine-structure spectrum of ²³⁵No measured during the period of 90–360 s after the ends of the source depositions.

Future

Decay Spectroscopy - Case Study ²⁵⁵No

TABLE III. Hindrance factors of α transitions from the 1/2⁺[620] ground states in the N = 153 isotones ²³¹Cf, ²³³Fm, and ²³³No to excited states in the N = 151 daughters. They were calculated on the basis of the Preston's spin-independent theory [21] using the radius parameters given in Refs. [22,23].

Nilsson orbital	Populated level	Hindrance factor				
		$^{251}Cf \rightarrow ^{247}Cm$	$^{259}\text{Fm} \rightarrow ^{249}\text{Cf}$	²⁵⁵ No → ²⁵⁰ Fm		
1/2+[620]	5/2+	11	17	18		
	3/2+	19	23	22		
	1/2+	2.6	3.0	3.8		
1/2+[631]	5/2+	32	31	36		
	3/2+	11	11	16		
5/2+[622]	9/2+	77	48	83		
	7/2+	134	72	85		
	5/2+	31	25	42		
9/2-[734]	11/2-	512	350	510		
	9/2-	5100	3200	4800		

TABLE IV. B(E2) values of $1/2^+[631] \rightarrow 5/2^+[622]$ and $1/2^+[620] \rightarrow 5/2^+[622]$ transitions in various actinide nuclei.

Nuclide	Elevel (keV)	t _{1/2}	E_{γ} (keV)	B(E2) (W.u.)
· · · · · · · · · · · · · · · · · · ·	$1/2^+[631] \rightarrow 5/2^+[$	622]		
239U147	133.7	0.78(4) µs	133.7	0.0404(21)
241Pu147	161.4	0.88(5) µs	161.4	0.0218(12)
243Cm147	87.4	1.08(3) µs	87.4	0.0313(9)
240 Pu149	383.6	0.33(3) µs	96.2	0.114(10)
245Cm549	355.9	0.29(2) µs	103.0	0.105(7)
²⁵¹ Fm ₁₅₁	392.0	22(3) ns	191.9	0.41(6)
	$1/2^+[620] \rightarrow 5/2^+[$	622]		
245 Purei	311	0.33(2) µs	47	0.139(8)
247Cm151	404.9	100.6(6) ns	177.5	0.1338(8)
al Greenlees (JYF	L, Finland)	Spectroscopy of VHE		EJC2012

12/77

erc

Infre	MI	IC D	inn
mue	лuu	i e u	

Experiments

Alpha Spec

In-Beam Spe

K-:

nerism

Future

Decay Spectroscopy - Case Study ²⁵⁵No

In-Beam Spec

bec

somerism

Future

Decay spectroscopy of ²⁵⁵Lr

A.Chatillon et al., EPJA 30 397 (2006)

Fig. 4. Portion of the α -decay spectrum, resulting from recoil- α correlations, in the ²⁵⁵Lr region. Data are taken from the JYFL experiment.

Spectroscopy of VHE

Fig. 9. Upper panel: matrix corresponding to prompt α - γ correlations. Lower panel: γ transition in coincidence with the ²⁵¹Md α line. Data are taken from the GANIL experiment.

Fig. 13. Level scheme of $^{247}\mathrm{Es}~^{251}\mathrm{Md}$ and $^{255}\mathrm{Lr}$ deduced from experimental data. The tentative $8290\,\mathrm{keV}$ line from $^{255}\mathrm{Lr}$ is not shown.

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Decertor	aatraaaaa	t of CLUD			

Decay spectroscopy at SHIP

- Trace separation of states from 4 spherical shells:
- $\pi[521]1/2^-(2f_{5/2})$
- π[514]7/2⁻ (1h_{9/2})
- π [633]7/2⁺ (1 $i_{13/2}$)
- π [521]3/2⁻ (2 $f_{7/2}$)

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Outline					

- 2 Experimental Approaches
- 3 Alpha Decay (Fine Structure) Spectroscopy
- In-Beam Spectroscopy
- 5 Structure of High-K States
- 6 Future Perspectives

Experiments

Alpha Spec

In-Beam Spec

K-Isomerism

Future

Over a decade of in-beam studies in the region of ²⁵⁴No

P.Reiter et al., PRL 82, 509 (1999)

Experiments

Alpha Spec

In-Beam Spec

2

nerism

Future

In-beam γ -ray Spectroscopy of ²⁵⁴No

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Rotational	Bands				

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future

Rotational Bands

Harris Fits

•
$$\mathcal{J}^{(1)} = \hbar^2 \frac{2I-1}{E_{\gamma 1}}$$

•
$$\mathcal{J}^{(2)} = \frac{4\hbar^2}{\Delta E_{\gamma}}$$

•
$$\mathcal{J}^{(1)} = \mathcal{J}_0 + \mathcal{J}_1 \omega^2$$

$$\mathcal{J}^{(2)} = \mathcal{J}_0 + 3\mathcal{J}_1\omega^2$$

•
$$I = \mathcal{J}_0 \omega + \mathcal{J}_1 \omega^3 + 1/2$$

erc

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
D	1 D 1				

Rotational Bands

Harris Fits

•
$$\mathcal{J}^{(1)} = \hbar^2 \frac{2I-1}{E_{\gamma 1}}$$

•
$$\mathcal{J}^{(2)} = \frac{4\hbar^2}{\Delta E_{\gamma}}$$

•
$$\mathcal{J}^{(1)} = \mathcal{J}_0 + \mathcal{J}_1 \omega^2$$

•
$$\mathcal{J}^{(2)} = \mathcal{J}_0 + 3\mathcal{J}_1\omega^2$$

•
$$I = \mathcal{J}_0 \omega + \mathcal{J}_1 \omega^3 + 1/2$$

erc

Experiment

Alpha Spec

In-Beam Spec

1 Spec

Isomerism

Future

In-beam studies in region of ²⁵⁴No

S. Eeckhaudt, P.T. Greenlees et al., EPJA 26, 227 (2005)

- Confirmed deformed nature of nuclei around ²⁵⁴No
- Showed fission barrier robust with spin (> 20ħ)
- Faster alignment at N=150 compared to N=152 (πi_{13/2}, νj_{15/2})
- Excellent testing ground for theory; e.g. Duguet et al., NPA 679, 427 (2001), Bender et al., NPA 723, 354 (2003), Afanasjev et al., PRC 67, 024309 (2003), Egido and Robledo, PRL 85 1198 (2000)

In-Beam Spec

Theory - N=150 vs. N=152

PHYSICAL REVIEW C 86, 011301(R) (2012)

Understanding the different rotational behaviors of ²⁵²No and ²⁵⁴No

H. L. Liu,^{1,*} F. R. Xu,² and P. M. Walker^{3,4}

Paul Greenlees (JYFL, Finland)

erc

Experiments

Alpha Spec

In-Beam Spec

K-I

Recent history of JUROGAM

- Fifth and final campaign ended May 2008
- 2003 2008: 67 experiments, 11000 hours beam on target
- 2008: Fully instrumented with TNT2 digital electronics
- TNT2 cards in collaboration with CNRS/IN2P3 GABRIELA
- Superseded by JUROGAM II

PRL 102, 212501 (2009) PHYSICAL REVIEW LETTERS void and and 20 MAY 2000

$\gamma\text{-Ray}$ Spectroscopy at the Limits: First Observation of Rotational Bands in $^{255}\mathrm{Lr}$

S. Ketchut^{1,4} P.T. Grenines^{1,4} D. Ackermans^{1,5} A. smils,² E. Ciernes⁴, 1G. Darby^{1,4} D. Dorava^{1,4}, A. Doraut^{1,4}, S. Eschaudt, B. J. Gall^{1,4}, A. Gregar, T. Gand^{1,4}, C. Gray, S. K. Harchell,^{2,4} F. D. Inerkerg^{1,4} F. Helfberger,² U. Jakoboos,¹ G. D. Jones⁴, P. Jones^{1,4}, R. James^{1,4}, S. Moses^{1,4}, A. Breiten^{4,4}, P. Lepipinen^{4,4}, J. Jampault,^{4,5} Moscol^{4,4}, N. Nyman,⁴ A. Generl^{1,4}, P. Jampine^{4,4}, P. Jampine^{4,4}, P. Jampine^{4,4}, P. Jampine^{4,4}, P. Jampine^{4,4}, P. Jones^{1,4}, P. Jampine^{4,4}, P. Jam

Experiments

Alpha Spec

In-Beam Spec

1 Spec

-Isomerism

Future

The JUROGAM II Germanium Array

- 24 Clover and 15 Tapered Ge detectors GAMMAPOOL resource
- Total Photopeak Efficiency ~6% @ 1.3 MeV
- Excellent γ-γ efficiency
- Autofill system built by University of York, part of GREAT
- Instrumented with TNT2 / Lyrtech digital electronics
- Higher counting rates, higher beam intensities
- 20,000 hours in-beam γ-ray spectroscopy passed in 2011

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 85, 041301(R) (2012)

In-beam spectroscopy with intense ion beams: Evidence for a rotational structure in 246Fm

J. Post.¹⁹ B. J.-P. Gall, ¹⁰ O. Devanue, ¹⁰ P. Torenhers, ¹⁰ R. Romley, ¹ L. L. Andersson, ¹ D. M. Cox, ¹ F. Dochey, ¹ T. Grahn, ² K. Hauchild, ²⁰ G. Henning, ²⁰ A. Herzan, ¹ R. D. Herzberg, ¹ P. Hellberger, ¹ U. Jakobson, ¹ P. Jones, ² R. Julin, ¹ S. Joston, ¹ S. Korlenti, ¹ T.-J. Khoo, ³ M. Leino, ¹ J. Lipuyer, ¹ Al. J. Apper-Maters, ²⁰ P. Neimine, ¹ J. Jakanine, ³ P. Papadakis, ¹ E. Part, ¹ P. Pankin, ² F. Bakhali, ² S. Ruins, Anthal, ³ Roberts, ¹ R. Sandardins, ³ J. Sander, ¹ S. Sandardins, ³ J. Sander, ¹ C. Scholey, ¹ D. Severyaki, ¹ J. Sandi, ¹ B. Sulginan, ³ and ¹ U. Unitable³

Future

Next step - push to Rutherfordium Z=104

- Can produce 256 Rf using: 50 Ti + 208 Pb $\rightarrow {}^{256}$ Rf + 2n
- Cross section below 20 nb
- Need high intensity ⁵⁰Ti beam
- Used up to 70 pnA in ²⁴⁶Fm experiment
- Rotating target wheel built at IPHC Strasbourg

⁵⁰Ti MIVOC beam development

- Metallic Ions from VOlatile Compounds
- Method developed at JYFL
- Synthesis of enriched ⁵⁰Ti compound led by IPHC Strasbourg
- Several years of hard work!
- 19 μ A of ⁵⁰Ti¹¹⁺ from ECR
- 490 enA on target
- Low consumption 0.2 mg/hr
- See J.Rubert et al., NIMB 276, 33 (2012)

erc

Experime

Alpha Spec

In-Beam Spec

K-Isome

Future

In-beam spectroscopy of SHE: ²⁵⁶Rf

Experimental Details

- ${}^{50}\text{Ti} + {}^{208}\text{Pb} \Rightarrow {}^{256}\text{Rf} + 2n$
- JUROGAM II, RITU, GREAT
- Enriched ⁵⁰Ti beam from MIVOC
- 450 hours, 29pnA beam, 2210 observed fissions
- Cross section 17 nb

P.T.Greenlees, J.Rubert et al., PRL **109**, 012501 (2012)

Experiments

Alpha Spec

In-Beam Spec

K-Isomerisr

Future

In-beam spectroscopy of SHE: ²⁵⁶Rf

Paul Greenlees (JYFL, Finland)

Spectroscopy of VHE

Future

Experimental 2⁺ Energies

Woods-Saxon E_{sp}

Harris Fits

•
$$\mathcal{J}^{(1)} = \hbar^2 \frac{2I-1}{E_{\gamma 1}}$$

•
$$\mathcal{J}^{(2)} = \frac{4\hbar^2}{\Delta E_{\gamma}}$$

•
$$\mathcal{J}^{(1)} = \mathcal{J}_0 + \mathcal{J}_1 \omega^2$$

•
$$\mathcal{J}^{(2)} = \mathcal{J}_0 + 3\mathcal{J}_1\omega^2$$

•
$$I = \mathcal{J}_0 \omega + \mathcal{J}_1 \omega^3 + 1/2$$

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Theoretica	al 2 ⁺ Ener	gies			

 Introduction
 Experiments
 Alpha Spec
 In-Beam Spec
 K-Isomerism
 Future

 Correlation to Masses - Isotopes
 Intermediate
 Intermediate
 Intermediate
 Intermediate

AME2003: $S_{2n}(Z,N) = B(Z,N) - B(Z,N-2), \delta_{2n}(Z,N) = S_{2n}(Z,N) - S_{2n}(Z,N+2)$

Spectroscopy of VHE

 Introduction
 Experiments
 Alpha Spec
 In-Beam Spec
 K-Isomerism
 Future

 Correlation to Masses - Isotones

AME2003: $S_{2p}(Z,N) = B(Z,N) - B(Z-2,N), \delta_{2p}(Z,N) = S_{2p}(Z,N) - S_{2p}(Z+2,N)$

Spectroscopy of VHE

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Internal	Conversion				

- $E_i = E_{\gamma} B_i;$ $i = K, L_I, L_{II}, ..., M_V, ...$
- $\alpha_{tot} = \frac{N_e}{N_{\gamma}} = \alpha_K + \alpha_L + \dots$
- $\alpha \propto \frac{Z^3}{n^3 E_{\gamma}^{2.5}}$
- *α* increases strongly with multipolarity
- α larger for magnetic transitions

Internal Conversion

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Electromagnetic Properties					

- Odd-proton orbitals in ²⁵¹Md
- B(M1)/B(E2) depends on $(g_K g_R / Q_0)$

Experimen

sipila Spec

In-Beam Spec

c

omerism

Future

In-beam γ -ray Spectroscopy of ²⁵⁵Lr

 ${}^{48}\text{Ca} + {}^{209}\text{Bi} \Rightarrow {}^{255}\text{Lr} + 2\text{n}, \sigma \simeq 300 \text{ nb}, \text{ S. Ketelhut et al., PRL 102 212501 (2009)}$

Paul Greenlees (JYFL, Finland)

Spectrometer Design Considerations

Efficiency

Broad Range Typically 0-1 MeV Backscattering - normal incidence

Magnetic Field

Profile Strength

Detector

Thickness Size Granularity

Resolution

Intrinsic Doppler Broadening

Delta Electron Suppression

Kinematics Biased Target Physical Block HV Barrier High Counting Rate Capability Tagging Techniques

Combination with Ge

Maintain Ge Efficiency Maintain P/T Effect of stray field

erc

In-Beam Spec

Future

Recoil-Decay Tagging with SACRED

 Introduction
 Experiments
 Alpha Spec
 In-Beam Spec
 K-Isomerism
 Future

 Conversion-Electron
 Spectroscopy of 254 No
 Physical Review Letters
 11 November 2002

Conversion Electron Cascades in ²⁵⁴₁₀₂No

P. A. Butler,¹ R. D. Humphreys,¹ P.T. Greenlees,² R.-D. Herzberg,¹ D. G. Jenkins,¹ G. D. Jones,¹ H. Kankaanpää,² H. Kettunen,² P. Rahkila,² C. Scholey,^{1/2} J. Uusitalo,² N. Amzal,¹ J. E. Bastin,¹ P. M.T. Brew,¹ K. Eskola,³ J. Gerl,⁴ N. J. Hammond,¹ K. Hauschild,⁵ K. Helariutta,⁴ F.-P. Heßberger,⁴ A. Hürstel,⁵ P. M. Jones,² R. Julin,² S. Juutinen,² A. Keenan,² T-L. Khoo,⁶ W. Korten,⁵ P. Kuusiniemi,² Y. Le Coz,⁵ M. Leino,² A.-P. Leppänen,² M. Muikku,² P. Nieminen,² S.W. Ødegård,⁷ T. Page,¹ J. Pakarinen,² P. Reiter,⁸ G. Sletten,⁹ Ch. Theisen,⁵ and H-J. Wollersheim⁴

Experiments

Alpha Spec

In-Beam Spec

Spec

omerism

Future

The SAGE Spectrometer

Future

SAGE - Silicon Detector

- C.A.E.N. A1422 charge sensitive hybrid preamplifiers
 - 400 mV/MeV
 - Low noise
 - Suitable for high count-rates

Experiments

Alpha Spec

In-Beam Spec

1 Spec

Isomerism

Future

SAGE - Electronics

201 Fully digital channels 90 Si channels 111 Ge channels

Experiments

Alpha Spec

In-Beam Spec

-Isomerism

Future

SAGE - Shielding

- Photomultiplier tubes are sensitive to magnetic fields
- Shields: Weaken and redirect stray magnetic field

Spec

somerism

Future

The SAGE Spectrometer

Figure 45: An example drawing of simulated events visualised in GeanH. Electrons are presented with red lines and gamma rays with blue. Only some of the electrons reach the detector while the others either interact with the surrounding materials (open circles) or are reflected back by the HV barrier. Note also the magnetic bottle effect of electrons being trapped in the magnetic field.

> Full Geant4 Simulation P.Papadakis, D.Cox, J.Konki, K.Hauschild, P. Rahkila

Paul Greenlees (JYFL, Finland)

Introduction Experiments Alpha Spec In-Beam Spec K-Isomerism Future

erc

In-Beam Spec

ICC determination with SAGE-¹³³Ba

Paul Greenlees (JYFL, Finland)

In-Beam Spec

ICC determination with SAGE-¹⁷⁷Au Preliminary!

265 keV 9/2,11/2->9/2+

ICC

K ICC Exp

K ICC BRICC

L ICC Exp

L ICC BRICC

K/L Exp

K/L BRICC

K:182.5keV L:254keV

Value

0.090

0.082

0.050

1.610

1.82

Error

0.037

0.007

0.002

0.001

0.400

0.04

257 keV 21/2->17/2+ K . 176

5hoV	1 . 242keV

ICC	Value	Error		
K ICC Exp	0.088	0.024		
K ICC Theo	0.091	0.004		
L ICC Exp	0.062	0.014		
L ICC BRICC	0.051	0.001		
K/L Exp	1.421	0.508		
K/L BRICC	1.644	0.04		

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Outline					

- 2 Experimental Approaches
- 3 Alpha Decay (Fine Structure) Spectroscopy
- In-Beam Spectroscopy
- 5 Structure of High-K States
 - 6 Future Perspectives

Experiments

Alpha Spec

In-Beam Spec

K-Isomerism

Future

K-Isomerism in ²⁵⁴No and ²⁵⁰Fm

- Transition forbidden if: $\Delta K \leq L$
- Degree of forbiddenness $\nu = \Delta K L$
- Information on pairing gap, Δ and single-particle energies, ϵ_i
- $E = \sqrt{(\epsilon_i \lambda)^2 + \Delta^2} + \sqrt{(\epsilon_j \lambda)^2 + \Delta^2}$
- Studies at focal plane clean environment
- Often full decay path to ground state can be delineated

Future

K-Isomerism in ²⁵⁴No and ²⁵⁰Fm

PHYSICAL REVIEW C

VOLUME 7, NUMBER 5

MAY 1973

Isomeric States in ²⁵⁰Fm and ²⁵⁴No[†]

Albert Ghiorso, Kari Eskola,* Pirkko Eskola,* and Matti Nurmia Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 30 November 1972)

- Isomeric states in ²⁵⁴No and ²⁵⁰Fm first postulated by Ghiorso et al., PRC7 (1973) 2032
- The transfer of the ²⁵⁰Fm atoms from the wheel onto the movable detectors must then be caused by the feeble recoil resulting from the isomeric transition or other accompanying γ rays and conversion electrons in the cascade that leads to the ground state. For a 500 keV γ ray the recoil energy of a ²⁵⁰Fm atom is about 0.5 eV.

FIG. 1. A schematic diagram of the seven-detectorstation system. The cross section at right shows the arrangement of the two morable mother detectors and the two stationary dragther detectors.

Experiment

Alpha Spe

In-Beam Spe

K-Isomerism

Future

K-Isomerism in ²⁵⁴No

Spectroscopy of VHE

EJC2012 55 / 77

In-Beam Spec

c

K-Isomerism

Future

K-Isomerism in ²⁵⁴No

F.P. Hessberger et al., EPJA 43, 55 (2010) / C.Gray-Jones, Thesis, University of Liverpool

Paul Greenlees (JYFL, Finland)

Spectroscopy of VHE

EJC2012 56 / 77

Experiments

Alpha Spec

In-Beam Spe

m Spec

K-Isomerism

Future

K-Isomerism in ²⁵⁴No

Introduction Experiments Alpha Spec In-Beam Spec K-Isomerism Future
K-Isomerism in ²⁵⁰Fm

Paul Greenlees (JYFL, Finland)

EJC2012 58 / 77

Introduction Experiments Alpha Spec In-Beam Spec K-Isomerism Future

Paul Greenlees (JYFL, Finland)

Spectroscopy of VHE

Experiments

Alpha Spec

In-Beam Spe

K-Isomerism

Future

Known 2QP K-Isomers in Region

Nucleus	\mathbf{K}^{π}	T _{1/2}	Ex	Decay Mode	Configuration
²⁷⁰ Ds	9-,10-	6 ms	≥1.13 MeV	α	$9^ \nu[725]11/2^- \otimes \nu[613]7/2^+$
					$10^{-} - \nu [725] 11/2^{-} \otimes \nu [615] 9/2^{+}$
²⁵⁶ Rf	6,7?	25 µs	≃1.120 MeV	γ	??
²⁵⁶ Rf	10-12?	17 µs	≃1.400 MeV	γ	??
²⁵⁴ No	8-	266 ms	1.293 MeV	γ	$8^{-} - \pi [514]7/2^{-} \otimes \pi [624]9/2^{+}$
²⁵² No	8-	110 ms	1.254 MeV	γ	$8^{-} - \nu[624]7/2^{+} \otimes \nu[734]9/2^{-}$
²⁵⁰ No	$6^+?$	42 µs	??	SF, γ ?	$6^+ - \nu[622]5/2^+ \otimes \nu[624]7/2^+$
²⁵⁶ Fm	7-	70 ns	1.425 MeV	γ ,SF	$7^{-} - \pi[633]7/2^{+} \otimes \pi[514]7/2^{-}$
²⁵⁰ Fm	8-	1.92 s	1.195 MeV	γ	$8^ \nu[624]7/2^+ \otimes \nu[734]9/2^-$
²⁴⁸ Fm	??	$\simeq 8 \text{ ms}$??	γ	??
²⁴⁶ Cm	8-	??	1.179 MeV	γ	8 [−] - ν[624]7/2 ⁺ ⊗ν[734]9/2 [−]
²⁴⁴ Cm	6+	34 ms	1.040 MeV	γ	$6^+ - \nu[622]5/2^+ \otimes \nu[624]7/2^+$

• References: See R.-D.Herzberg and P.T.Greenlees, Prog. Part. Nuc. Phys. 61, 674 (2008)

- ²⁵⁶Rf: H.B.Jeppesen et al., PRC **79**, 031303(R) (2009)
- 3QP isomer in ²⁵⁵Lr (Dubna/GSI/JYFL/Berkeley). Also in ²⁵³No

Paul Greenlees (JYFL, Finland)

Spectroscopy of VHE

EJC2012 62 / 77

Self-Consistent Calculations

HFB SLy4 - from A.Chatillon et al., EPJA 30 397 (20

 Introduction
 Experiments
 Alpha Spec
 In-Beam Spec
 K-Isomerism
 Future

 Self-Consistent Calculations

 Taken from Talk of Paul-Henri Heenen (http://nuclear1.paisley.ac.uk/SHEworkshop/)

Paul Greenlees (JYFL, Finland)

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future

Self-Consistent Calculations

Introduction	Experiments	Alpha Spec	In-Beam Spec	K-Isomerism	Future
Outline					

- 2 Experimental Approaches
- 3 Alpha Decay (Fine Structure) Spectroscopy
- In-Beam Spectroscopy
- 5 Structure of High-K States
- 6 Future Perspectives

Future

In-beam spectroscopy: Future

Experiments

Alpha Spec

In-Beam Spec

K-Isome

Future

Future with Stable Beams: Upgrades / New Devices

Image 4

M/Q resolving power > 300

Experiment

Alpha Spec

In-Beam Spec

K-Isc

Future

Optical spectroscopy of heaviest elements

- Sample of ²⁵⁵Fm produced at ORNL
- Breeding of ²⁵⁵Es from ²⁴⁶Cm
- Sample transported to Germany (about 10¹¹ atoms)
- Two-step RIS, Fm confirmed with QMS
- Determined location of atomic levels for first time
- Heavily dependent on atomic theory

M. Sewtz et al., PRL 90, 163002 (2003)

Experiments

Alpha Spec

In-Beam Spec

K-:

nerism

Future

Optical spectroscopy of heaviest elements

P.Van Duppen et al., LoI for SPIRAL2

erc

In-Beam Spe

Possibilities with RIBs

Around N=152/162

 $\begin{array}{l} 90-94\,Kr+164\,Dy\rightarrow254-258\,No^{*}\\ 90-94\,Kr+160\,Gd\rightarrow250-254\,Fm^{*}\\ 132\,Sn+137\,Cs\rightarrow267\,Db^{*}\\ 132\,Sn+132,134,136\,Xe\rightarrow264,266,268\,Rf^{*}\\ 132\,Sn+138\,Ba\rightarrow270\,Sg^{*}\\ 132\,Sn+139\,La\rightarrow271\,Bh^{*}\\ 132\,Sn+140,142\,Ce\rightarrow272,274\,Hs^{*}\\ 132\,Sn+142-150\,Nd\rightarrow274-282\,Ds^{*}\\ 90-96\,Kr+181\,Ta\rightarrow271-277\,Mt^{*}\\ 90-96\,Kr+180\,Hf\rightarrow270-276\,Hs^{*}\\ 90-96\,Kr+175,176\,Lu\rightarrow265-272\,Bh^{*}\\ 90-96\,Kr+176\,Yb\rightarrow266-272\,Sg^{*}\\ \end{array}$

Towards N=184?

 $\begin{array}{l} \text{Difficult even with radioactive beams} \\ ^{90-95}\text{Kr} + {}^{208}\text{Pb} \rightarrow {}^{298-303}118^{*} \\ ^{132}\text{Sn} + {}^{170}\text{Er} \rightarrow {}^{302}118^{*} \\ ^{132}\text{Sn} + {}^{176}\text{Yb} \rightarrow {}^{308}120^{*} \end{array}$
Introduction

Experiments

Alpha Spec

In-Beam Spe

K-Isomerism

Future

SPIRAL2 Predicted Intensities

- Figures assume 5×10^{13} fissions/sec
- Phase2 Day1, 50 kW d beam: e.g. ⁹²Kr 6.2MeV/u 2.6×10⁸ pps

erc

Introduction

Experiments

Alpha Spec

In-Beam Spe

K-Isome

Future

EURISOL Predicted Intensities

Fig. 13: Predicted EURISOL intensities of several nuclides:

Left:	Be (black open dots),	Centre:	Zr (filled green triangles),	Right:	Hg (squares)	
	Li (blue filled squares),		Nb (open red diamonds),		Fr (triangles)	
	Mg (open green triangles),		Mo (magenta filled triangles),			
	Ar (red filled rhomboids),		Tc (black open dots),			
	Ni (magenta open triangles),		Ru (red filled dots)			
	Ga (black filled dots),		Rh (green open triangles),			
	Kr (open blue squares);		Pd (red filled diamonds)			erc
			Ag (magenta open triangles)			
			Cd (filled black dots),			

Paul Greenlees (JYFL, Finland)

Alpha Spec

In-Beam Spec

Future

Possibilities with RIBs

Atomic Physics and Chemistry of the Transactinides

>5 atom/day list

≻ ²⁶⁴ Rf	²⁵² Cf(¹⁶ C,4n)
≥ ²⁶⁵ Db	²⁴⁹ Bk(²⁰ O, 4n)
≥ ²⁶⁸ Sg	²⁵² Cf(²⁰ O, 4n)
≥ ²⁶⁷ Bh	²⁵² Cf(²¹ F, 6n)

W. Loveland, FUSHE2012 See also W.Loveland PRC 76 014612 (2007) N.B. Does not include detection efficiency

What kind of reactions with RNBs are used to form n-rich nuclei?

Reactants	Products	FRIB Beam Intensity (p/s)	Production Rate (atoms/ day)
²⁶ Ne + ²⁴⁸ Cm	²⁷¹ Sg + 4n	2.2 × 10 ⁶	0.004
³⁰ Mg + ²⁴⁴ Pu	²⁷⁰ Sg + 4n	7.1 × 10 ⁶	1
²⁹ Mg + ²⁴⁴ Pu	²⁶⁹ Sg + 4n	3.6 × 10 ⁷	0.2
²⁰ O + ²⁵² Cf	²⁶⁸ Sg + 4n	1.5 × 10 ⁸	5
²³ Ne + ²⁴⁸ Cm	²⁶⁷ Sg + 4n	1.6 × 10 ⁸	1

Summary

- Detailed spectroscopy of heavy elements can provide high quality data and level assignments
- In-beam spectroscopy at 10 nb level
- Decay spectroscopy at sub-nb level
- Data is providing challenges for theory
- Hopefully will lead to a better understanding of the structure of SHE
- Laser and Mass Measurements will bring much-needed new information
- Many new facilities being built and upgrades going on
- Some opportunities to produce new isotopes from secondary reactions with RIBs
- Still much to be done (for both experiment and theory)

