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I. INTRODUCTION

The atomic nucleus is a very complex microscopic system made of protons and neutrons

[12][8][7]. The interaction among them is not a fundamental one, but the residual interaction

among the constituents of the nucleon, namely quarks and gluons. This e�ective character is

responsible for the complexity of the �nuclear force� and its exotic properties: it has a strong

spin dependence, a strong tensor component, three body forces are relevant and it has a

strongly repulsive core. In spite of all this complexity and the number of elements that make

a typical nucleus (from a few nucleons to around three hundred) there is strong empirical

evidence supporting the existence of a common potential that creates orbits occupied by the

nucleon, very much the same as in the case of a standard atom where the electrons orbit

around the central atomic nucleus. In the case of the nucleus there is no �natural center�

and understanding the reason for such a common potential is a beautiful but extremely

di�cult exercise involving lots of quantum mechanics algebra. To make a long story short,

is the Pauli principle that identical fermions have to obey, the responsible for protons and

neutrons to stay away from each other in such a way that they only feel the long range

mildly attractive part of the �nuclear potential�. The most prominent experimental evidence

in favor of a common potential is the existence of the so-called �magic numbers�, a given

set of proton or neutron numbers that imply extra stability at the level of binding energies.

This phenomenon is also known in atomic physics in the form of the exceptional chemical

stability of the noble gases. In terms of the simplistic view of the atom as made of a

central nucleus with positive charge Z that creates an electrostatic potential, noble gases

correspond to those electronic con�gurations that completely �ll one of the orbitals created

by the common potential. With this in mind, the extra stability of 208Pb or 132Sn, two double

magic nuclei, shares the same explanation as the lack of chemical reactivity of Radon.

Pairing in another important piece of the nuclear puzzle: in a few words is the tendency

protons and neutrons have to couple to �pairs� with angular momentum zero. This tendency

explains, for instance some subtle di�erences in the binding energies of even-even nuclei

(systems with an even number of protons and neutrons), odd-A ones (systems with either

the number of protons or neutrons an odd number) or odd-odd systems and the result

fundamental to explain the number of stable isotopes for a given chemical species. The

existence of pairing interaction also explains in a very natural way the fact that the ground
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state of all even-even nuclei is a 0+ (i.e. angular momentum J = 0 and parity π = +1). The

combination of the pairing ideas and the mean �eld potential is also fundamental to explain

the spin and parity of odd-A systems in a natural way.

In the following I will describe how to handle the mean �eld and pairing concepts in a

theoretical framework to describe the atomic nucleus. First, the concept of second quanti-

zation which is a useful tool to simplify the complicated quantum mechanisc algebra will be

introduced. Next the focus will be in the description of the Hartree- Fock approximation

which is the cornerstone of the mean �eld approximation. An example of application with a

simpli�ed model (Lipkin model) will be presented next. In the next section, the formalism

used to combine the mean �eld and pairing concepts, namely the Hartree- Fock- Bogoliubov

approximation will be discussed in detail. I will �nish with some illustrative examples.

In the realm of the mean �eld, three di�erent groups of e�ective interactions are popular:

the Skyrme, Gogny and relativistic type of approaches. I will not dwell into the details that

make each of the approaches di�erent and refer the interested reader to the literature where

there are abundant review articles [1][6][10].

II. SECOND QUANTIZATION FORMALISM

The second quantization formalism is a nice tool to simplify the description of a quantum

mechanics system made up of many particles. The reader interested in a deeper understand-

ing of the subject in a nuclear physics context can consult the textbooks of Refs [2][9] for

more details. The mathematical description of a particle in the context of quantum me-

chanics is given in terms of a �vector state� belonging to a so-called Hilbert space (nothing

but a vector space and a scalar product). Using Dirac's notation, vectors in the Hilbert

space H are denoted by |α〉 where α denotes a set of labels characterizing the state and

depending on the physics to be described. To better understand this rather sophisticated

mathematical language let us consider a quantum mechanic system made of a particle with

a property that we will call �spin� taking only two possible values. The fact that only two

values are enough to describe the system is given by its physical properties and obviously

will change from system to system. In this case, the Hilbert space is the space of vectors in

two dimensions and |α〉is a linear combination of the two basic states corresponding to the

two possible values (think in terms of spin up and spin down) represented by a vector with
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two components

|α〉 = α1| ↑〉+ α2| ↓〉 =

 α1

α2

 .

In the second example, we consider a particle in one dimension moving under the in�uence of

a harmonic potential V (x) = 1
2
mω2x2. In this case, the variable characterizing the particle

is its position (and momentum) and therefore is a continuous variable. The states |α〉 are

linear combinations of states with a de�nite position |x〉

|α〉 =

ˆ
dxfα(x)|x〉

with functions fα(x) having the property that
´
dx|fα(x)|2 = 1 (square integrable functions

in mathematical jargon). The stationary states for this physical case are obtained by solving

the Schrodinger equation leading to a set of in�nite states |n〉characterized by an integer

n = 0, 1, . . . The corresponding �wave functions� fn(x) are the well known wave functions of

the harmonic oscillator in one dimension

φn(x) = NnHn(x/b) exp(−1

2

x2

b2
)

Those wave functions depend upon a length scale parameter b given in terms of the mass m

and frequency ω of the oscillator. The generalization to three dimensions can be made in

terms of three oscillators along each of the spatial directions leading to states characterized

by the three quantum numbers nx, ny and nz, that is one dimensional quantum numbers

for each of the directions and a wave function

φnxnynz(~r) = φnx(x)φny(y)φnz(z)

Another possibility is to use spherical coordinates r, θ, φ instead of the cartesian ones x, y

and z. In this case the quantum numbers are n, the radial quantum number, l the orbital

angular momentum and m the projection of the angular momentum along the z axis

Ψnlm(~r) = Rnl(r)Ylm(θ, φ)

Obviously, both sets of solutions of the Schroedinger equation are related by means of a

unitary transformation and they represent di�erent components of the same vector state

expressed in di�erent basis.

The above considerations can be extended to the case of many particle systems by consid-

ering wave functions of the A coordinates (and eventually spin and isospin) Ψ(~r1, ~r2, . . . , ~rA).
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When the A particles are indistinguishable (that is they have the same properties like mass,

charge, spin, etc, like two protons) the symmetrization postulate of quantum mechanics has

to be considered. In order to make the physical description of a system of A indistinguish-

able particles independent of the labeling of the particles it is necessary to impose that the

A particle is either completely symmetric or skew-symmetric under the exchange of any

two particles in the system. The postulate is complemented by a rule (some how justi�ed

in the context of quantum �eld theory) stating that particles with integer spin (or zero)

must have symmetric wave functions whereas those particles with half integer spin (like the

spin 1/2 protons and neutrons that constitute the atomic nucleus) must have completely

skew-symmetric wave functions.

In the second quantization formalism a creation operator a+
α and the wave function of

the vacuum |〉 are introduced in such a way that a vector state of a particle is given by the

action of the creation operator in the vacuum

|α〉 = a+
α |−〉

that is, the operator a+
α creates a particle with quantum numbers α. A possible wave function

of a system of two particles is given by the action of two creation operators in the vacuum

|α1α2〉 = a+
α1
a+
α2
|−〉.

This kind of wave function is denoted as �independent particle� wave functions as the wave

functions of the two particles are independent of each other. This is not the most general

type of two particle wave functions, that also includes fully correlated states like the general

function Ψ(~r1, ~r2). However, any general function (satisfying the requirements of quantum

mechanics) of the two coordinates can be expanded as a linear combination of �independent

particle� wave functions

Ψ(~r1, ~r2) =
∑
α1α2

Cα1α2φα1(~r1)φα2(~r2)

indicating the relevant role played by those �independent particle� states. The procedure is

easily extended to deal with the wave function of an A particle system. The �independent

particle� type of wave functions is given in this case by the general product of A creation

operators acting on the vacuum
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|α1, . . . , αN〉 =
A∏
i=1

a+
αi
|−〉.

Along with the creation operators we have to consider they hermitian conjugate denoted aα.

This operators annihilate the vacuum

aα|−〉 = 0

and, as discussed bellow, they also satisfy

aαa
+
α |−〉 = |−〉

that is easily interpreted by assigning to the operators aα the role of annihilation operators of

a particle in the quantum state α. Up to now nothing has been said about the symmetrization

postulate of quantum mechanics. It turns out that it can be easily dealt with in the second

quantization formalism by requiring that the creation and annihilation operators satisfy

canonical commutation (anticommutation) relations for bosons (fermions). In the fermionic

case (the one we are interested in) we have

{a+
α , a

+
β } = {aα, aβ} = 0 and {a+

α , aβ} = δαβ

Operators depending on the properties of each particle, like the kinetic energy or the position

operators are denoted as �one body operators� and are given by the sum of the corresponding

operator acting on the appropriate Hilbert space

T̂ =
N∑
i=1

t̂i.

It turns out that those operators can be written in the second quantization formalism as

T̂ =
N∑
i=1

t̂i =
∑
kl

tkla
+
k al

where tkl are the operator's matrix elements between the states created by a+
k and a+

l

tkl = 〈φk|t̂|φl〉 =

ˆ
d3~r φ∗k(~r)t̂φl(~r).

For instance, in the case of the momentum operator

~Pkl = i~
ˆ
d3~r φ∗k(~r)~∇φl(~r).
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On the other hand, operators that depend on two particles, like the interaction potential,

are denoted as two body operators

V̂ =
∑
i<j

v̂(i, j)

and given in the second quantization formalism by the expression

V =
∑
i<j

v(i, j) =
1

4

∑
k1k2k3k4

ṽk1k2k3k4a
+
k1
a+
k2
ak4ak3

where ṽk1k2k3k4 is the antisymmetrized two body matrix elements

ṽk1k2k3k4 = 〈k1k2|v̂(|k3k4〉 − |k4k3〉)

=

¨
d3~r1d

3~r2φ
∗
k1

(~r1)φ∗k2(~r2)v(~r1, ~r2) [φk3(~r1)φk4(~r2)− φk3(~r2)φk4(~r1)]

This is a quite involved quantity and as it has four indexes the number of them required in

typical calculations can be very large (billions of them!). Therefore, it is not surprising that,

in order to alleviate the burden imposed by their calculation, simple analytical forms are

chosen for the interaction and the basis wave functions. For instance, in the Gogny force the

potential energy is parametrized in terms of gaussians and the basis is that of the harmonic

oscillator whereas in the case of Skyrme like interactions, the potential energy is chosen to

be zero range and therefore is proportional to Dirac's delta function or its derivatives. The

e�cient calculation of the two body matrix elements has become an art, specially in atomic

physics and quantum chemistry.

A linear transformation among creation and annihilation operators is denoted �canonical�

if it preserves the canonical commutation relations. In the Hartree-Fock case, where creation

and annihilation operators are not mixed, the allowed transformations are of the kind

d+
k =

∑
l

Dlka
+
l

and its hermitian conjugate. The requirement on the canonical commutation relation

{dk, d+
k′} =

∑
ll′

D∗lkDl′k′{al, a+
l′ } = (D+D)kk′ = δkk′

implies that the transformation matrix has to be unitary (that is, its hermitian conjugate is

its inverse). The commutation relations for creation operators alone or annihilation opera-

tors are alone are straightforwardly satis�ed. In terms of Hilbert space states, a canonical
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transformation represents nothing but a linear combination of states

|Ψk〉 =
∑
l

Dlk|ϕl〉

that can also be portrayed as the decomposition of the state |Ψk〉 as a linear combination of

set of states |ϕl〉.

Given an arbitrary unitary complex transformation D represented by an N ×N matrix,

the number of independent parameters is given by 2N2 − N(N − 1) − N = N2 where

2N2 is the number of independent parameters in a complex N × N matrix. The quantity

N(N − 1) = 2× (N(N − 1)/2) is the number of restrictions imposed by the upper triangle

matrix in the condition D+D = I (there are N(N−1)/2 elements in the upper triangle, each

of them complex). Finally, the subtracting N is the number of conditions in the diagonal

(which is a real number by construction). With those general creation operators d+
k we can

construct the most general HF product state

|Φ〉 =
A∏
k=1

d+
k |−〉

In all quantum mechanical calculations is convenient to refer all the abstract quantities to

some kind of basis by means of linear transformations in such a way that the calculation is

referred to the coe�cients of the linear transformation instead of to the abstract quantities.

With this in mind, we refer our mean �eld wave functions to some basis made of N creation

operators a+
l {l = 1, . . . , N} that can generate

 N

A

 di�erent Slater determinants of A

particles.

To �nish this section, we will discuss now how to evaluate mean values and overlaps

between general A particle �independent particle� wave functions. First, let us focus in the

evaluation of mean values of operators and consider the typical mean value

〈φ|d+
k d

+
l dmdn|φ〉

where

|φ〉 =
A∏
r=1

d+
r |〉.

The key fact is that |φ〉 is the vacuum of d+
k if k is included in the set of indexes entering the

de�nition of |φ〉, that is, the set 1, . . . A. This kind of indexes will be called �particle like� or
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�particle� in the following. The state |φ〉 is also the vacuum of dm when m is not included

in the set de�ning |φ〉. This kind of indexes will be denoted �hole like� or �hole� in the

following. It is easy to convince oneself about this fact by using the canonical commutation

relations to move d+
k next to the left of the same creation operator in |φ〉 and then use the

property
(
d+
k

)2
= 0 that is Pauli exclusion principle and is a consequence of the fermion

commutation relations. For dm we use the same commutation relations to jump over the

creation operators in |φ〉to reach the vacuum that is annihilated by dm. Using hermitian

conjugation, we can also show that 〈φ|dk = 0 if k is a �particle� index and 〈φ|d+
l = 0 if l

is a �hole� index. With this properties we can conclude that 〈φ|d+
k d

+
l dmdn|φ〉 will only be

di�erent from zero if m, n, k and l are all of them �particle like�. Assuming this to be the

case we use the commutation relations to move the creation operators to the right

〈φ|d+
k d

+
l dmdn|φ〉 = −〈φ|d+

k dmd
+
l dn|φ〉+ δlm〈φ|d+

k dn|φ〉

= 〈φ|d+
k dmdnd

+
l |φ〉+ δlm〈φ|d+

k dn|φ〉 − δln〈φ|d
+
k dm|φ〉

= δlm〈φ|d+
k dn|φ〉 − δln〈φ|d

+
k dm|φ〉

= δlmδkn − δlnδkm

Let us now assume the existence of some creation operators f+
k , related to the d+

l by a

unitary transformation f+
k =

∑
l Flkd

+
l . The mean value

〈φ|f+
k′f

+
l′ fm′fn′ |φ〉 =

∑
klmn

Fkk′Fll′Fmm′Fnn′〈φ|d+
k d

+
l dmdn|φ〉

can be easily computed in terms of a quantity, usually denoted byρ and de�ned as

ρm′k′ =
∑

mk∈particle

Fkk′Fmm′δkm

The �nal result is

〈φ|f+
k′f

+
l′ fm′fn′ |φ〉 = ρn′k′ρm′l′ − ρn′l′ρm′k′

which is a particular case of the general Wick's theorem for the evaluation of mean values

of an arbitrary number of creation and annihilation operators. Those mean values are given

as the sum of the product of all possible contractions of two operators (the density)

〈φ|f+
k′fn′ |φ〉 = ρn′k′
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The number of terms increases exponentially as the double factorial of the number of creation

and annihilation operators in the mean value minus one (some of the terms may be zero as

is the case in the present example. The extension to overlaps

〈φ|f+
k′f

+
l′ fm′fn′|φ′〉
〈φ|φ′〉

gives a similar result but in this case the contractions are given in terms of the overlap

densities
〈φ|f+

k′fn′ |φ′〉
〈φ|φ′〉

= ρn′k′

To �nish this section let us mention that an equivalent result can also be shown not for

mean values but for ensemble averages like the ones that appear naturally in the statistical

description of ensemble averages (�nite temperature systems).

III. THE HARTREE-FOCK METHOD (MEAN FIELD APPROXIMATION)

In the Hartree-Fock approximation it is assumed that the wave function of an A particle

system can be approximated by an independent particle wave function

|Φ〉 =
A∏
k=1

d+
k |−〉

where the d+
k are creation operators to be speci�ed later and |−〉 represents the wave function

of the true vacuum. The energy associated to such wave function can be easily computed

using the second quantization form of the hamiltonian

Ĥ =
∑
kl

tkla
+
k al +

1

4

∑
klmn

ṽklmna
+
k a

+
l anam

written in a given set of basis states associated to the creation and annihilation operators a+
k

and al (for instance a harmonic oscillator basis, or the set of eigenstates of the Wood-Saxon

potential, or even plane waves as in the description of nuclear matter, etc). The energy

associated to |Φ〉 can be easily computed using Wick's theorem

E =
∑
kl

tklρlk +
1

4

∑
klmn

ṽklmn(ρmkρnl − ρmlρnk)

where the density matrix ρmk =
∑

pDmpD
∗
kp is given in terms of the unitary transformation

relating d+
k with a+

l , that is d
+
k =

∑
lDlka

+
l and the index p in the sum refers to �particle
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type�, that is, all the orbitals d+
p which are occupied in the product wave function |Φ〉. The

energy is a functional of the wave function |Φ〉, through the dependence on the density

matrix. Finally, the density matrix depends on the free parameters of the D transformation

matrix. The coe�cients in D are determined by invoking the variational principle on the

energy, that is, the optimal D coe�cients to represent the ground state of the system are

those that minimize the energy

E[ρ+ δρ]− E[ρ] =
∑
kl

δρkl
∂E

∂ρkl
=
∑
klmn

δDmn
∂ρkl
∂Dmn

∂E

∂ρkl
= 0.

The variation of the energy with respect to D has to be handled with care as not all of the

D matrix elements are independent of each other. As previously mentioned, the matrix D is

complex unitary N ×N matrix with N2 parameters (a N ×N matrix with complex entries

contains 2N2 parameters, but the unitary requirements D†D = I impose N2constraints).

Any unitary matrix can be parametrized as the exponential of an anti-hermitian matrix that

is usually expressed as

D = eiZ

in terms of a complex, hermitian, N×N matrix Z withN2 free parameters (the same number

as D, obviously !). The recipe to handle the free parameters in Z is to use hermiticity to

convert any Z∗mk into Zkm and consider all (no restriction in the indexes) the Zmk as free

parameters. With this recipe in mind, we write

ρ = DFD+ = eiZFe−iZ

where F is a diagonal matrix with ones in the �rst A entries of the diagonal (occupied

particles) and zeros elsewhere (the density matrix in the Hartree-Fock basis D !). With this

parametrization of the density we have δρ = i(δZρ − ρδZ). Introducing the Hartree-Fock

hamiltonian

hmn =
∂E

∂ρmn

the minimum condition becomes

iTr[δZ[h, ρ]] = 0

which is valid for arbitrary δZ what implies

[h, ρ] = 0
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which is the �nal form of the Hartree-Fock equation. In the Hartree- Fock basis D the HF

equation takes the form

hF − Fh = 0

where h = D+hD. Taking into account that (1− F )F = 0 the above condition becomes

(1− F )hF = Fh(1− F ) = 0

For any matrix M in the HF basis the product FM(1 − F ) is denoted as the particle-hole

part of the matrix M . Therefore, the HF condition is expressed as the requirement that

the HF hamiltonian in the HF basis must have vanishing particle-hole (and hole-particle)

matrix elements. Obviously this condition is fully satis�ed if h is diagonal and usually the

HF equation is recast as the non-linear eigenvalue problem

hD = Dε

where the non-linearity comes from the dependence of h on ρ that implies a dependence on

D. The entries of the diagonal matrix of eigenvalues ε are referred to as the �single particle

energies�.

The non-linearity of the HF equation has as a consequence the possibility of spontaneous

symmetry breaking of the HF solution. That means that if the interaction v is invariant

under some kind of symmetry (rotational invariance, translational invariance, parity, etc) the

solution of the HF equation does not necessarily have to preserved those symmetries. As a

consequence of the spontaneous symmetry breaking mechanism the HF spatial density can

break rotational invariance (deformed intrinsic states), translational invariance (localized

nuclei), parity (re�ection asymmetric shapes), etc. This mechanism allows to incorporate

many correlations into a simple product wave function and can be understood in terms of

variational arguments. Let us assume a system with a single particle basis made of wave

functions eigenstates of the angular momentum a+
nljm. The only possibility within a pure

mean �eld framework to get a 0+ state (to describe the ground state of an even-even nucleus)

is to occupy the j orbital with 2j + 1 particles. The wave function is fully determined by

the symmetry requirements and there is no freedom, in the form of variational parameters,

to seek for a con�guration producing a lower energy. Another possibility, slightly outside

the mean �eld framework , is to consider a convenient statistical admixture of states like in
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the two particle case

|0+〉 =
∑
m

(−)m

2j + 1
a+
nljma

+
nlj−m|−〉

Again the symmetry requirements of the 0+quantum numbers �x the weights of the allowed

linear combinations. On the other hand, if symmetry breaking is allowed, general linear

combinations of the kind d+
q =

∑
nljmDnljm,qa

+
nljm are allowed which brings in many free

variational parameters that can, conveniently chosen, lower the energy of the systems if the

nuclear interactions permits. It turns out that the nuclear interaction favors in many cases

the breaking of symmetries being the rotational and translational invariance the two most

popular regarding spatial symmetries.

IV. THE LIPKIN MODEL AS AN EXAMPLE

Over the years the Lipkin-Meshkov-Glick (LMG) model has been used as a paradigm of

solvable model to test many-body theories and approximations, see Ref [12] for a detailed

account of this model and its use in Nuclear Physics. It has also been used to model the

transition to �deformed" systems by studying the behavior of the mean �eld solution as a

function of the two-body-force strength. Here we will use another viewpoint [13] that assigns

one of the LMG model parameter the meaning of a re�ection symmetry breaking parameter

(octupole deformation). In this way the Lipkin model is used to study the transition to a

parity-mixed system with the aim of understanding the features of low-lying levels associated

to the octupole degree of freedom. The reason is that in this framework we can also use the

model to go beyond the mean �eld and restore symmetries (parity in this case) as well as

considering long range correlations by means of the generator coordinate method.

The LMG model is composed of a N-fermion system with two energy levels, each having

an N-fold degeneracy (half �lling). Each state in the model is described by two quantum

numbers p and σ. The quantum number p can take N possible values and it is used to

distinguish levels in each of the N-fold-degenerated shells. The label σ can take two values:

+1 if the particle is in the upper shell and −1 if it is in the lower one. The particles interact

via a monopole-monopole interaction which only scatters particles between upper and lower

states having the same value of p. The model is described by the hamiltonian

H =
1

2
ε
∑
p,σ

σa+
pσapσ +

1

2
V
∑
p,p′σ

a+
pσa

+
p′σap′−σap−σ (1)
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where a+
pσ and apσ are creation and destruction operators, respectively, of a state with

quantum numbers p and σ. The operators in the interaction term can be reordered to

express it in the following form

1

2
V
∑
p,p′σ

a+
pσap−σa

+
p′σap′−σ

which clearly shows the operator a+
pσap−σ responsible of destroying a particle with quantum

numbers p− σ and creating another one in pσ. This is process we alluded to previously as

�scattering of particles between lower and upper shells�. Introducing the so-called �quasi-spin

operators"

K̂0 =
1

2

∑
p,σ

σa+
pσapσ K̂+ =

∑
p

a+
p+ap− K̂− = (K̂+)+ (2)

that satisfy the same kind of commutation relations as the three components of the angular

momentum operators Jz, J± the Hamiltonian can be written in a more compact form that

is more amenable to the technology of group theory

Ĥ = εK̂0 −
1

2
V (K̂+K̂+ + K̂−K̂−). (3)

The mean �eld solution of the model is easily obtained by minimization of the mean �eld

value of the energy. To compute the mean �eld energy an expression of the most general

Slater determinant in the model is needed. The hamiltonian of the model is invariant under

a permutation of the N levels below and the corresponding levels above the Fermi surface.

Therefore, the solutions of the model will be restricted to those solutions completely symmet-

ric under such permutation. Under the previous restriction, the most general unnormalized

Slater determinant is given by (see the Thouless theorem below)

|z〉 = exp(zK̂+)|0〉 (4)

where z is a complex number and |0〉 is the unperturbed vacuum obtained by �lling up the

lowest N orbits with energy −ε/2

|0〉 =
N∏
p=1

a+
p−|−〉.

Using the commutation rules of fermion operators it is easy to show that [K̂+, a
+
p−] = a+

p+

and [K̂+, a
+
p+] = 0. These two results allow to obtain

exp(zK̂+)a+
p− exp(−zK̂+) = a+

p− + za+
p+

exp(zK̂+)a+
p+ exp(−zK̂+) = a+

p+ − z∗a+
p−

14



that lead to the de�nition of a new set of operators

d0p = D
(
a+
p− + za+

p+

)
d+

1p = D′∗
(
a+
p+ − z∗a+

p−
)

and the corresponding hermitian conjugated d+
0p and d1p which are de�ned in terms of two

parameters D and D′ that are introduced to insure that the new set of operators satisfy

canonical commutation relations. A little algebra shows that |D| = |D′| = (1 + |z|2)−1/2

implying that the transformation d0p

d+
1p

 =

 D−0 D+0

D−1 D+1

 a+
p−

a+
p+


with

D−0 = (1 + |z|2)−1/2

D+0 = z(1 + |z|2)−1/2

D−1 = −z∗(1 + |z|2)−1/2

D+1 = (1 + |z|2)−1/2

is a unitary transformation. It is customary to introduce a change of variables to simplify

the notation D−0 = cosα and D+0 = sinαeiϕ. With the new variables we write d0p

d+
1p

 =

 cosα sinαeiϕ

sinαe−iϕ cosα

 a+
p−

a+
p+


and its inverse  a+

p−

a+
p+

 =

 cosα sinαeiϕ

sinαe−iϕ cosα

 d0p

d+
1p


A more relaxed look at the previous expressions reveals that the unitary transformation is

mixing creation and annihilation operators d0p and d
+
1p with no apparent reason. However,

behind this choice there is the desire to simplify the notation in the following respect: with

the traditional assignment the initial vacuum |0〉 is the vacuum of a+
p− (the Pauli exclusion

principle prevents to create a particle in an already occupied level) and also of ap+ (it is not

possible to destroy a non-existing particle). With the transformation as written the new HF
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wave function |φ(α, ϕ)〉 =
∏N

p=1 d0p| − 〉 will be the vacuum of d0p and d1p. The parameters

of the transformation α and ϕ are determined by the HF equation. In order to compute all

the required quantities we have to compute the di�erent contractions

〈φ(α, ϕ)|a+
m+am+|φ(α, ϕ)〉 = D∗+0D+0 = sin2 α

〈φ(α, ϕ)|a+
m+am−|φ(α, ϕ)〉 = D∗+0D−0 = sinα cosαe−iϕ

〈φ(α, ϕ)|a+
m−am+|φ(α, ϕ)〉 = D∗−0D+0 = sinα cosαeiϕ

〈φ(α, ϕ)|a+
m−am+|φ(α, ϕ)〉 = D∗−0D−0 = cos2 α

The mean values of observables are easily computed

〈φ(α, ϕ)|K̂0|φ(α, ϕ)〉 =
N

2
(sin2 α− cos2 α)

〈φ(α, ϕ)|K̂+K̂+|φ(α, ϕ)〉 = N(N − 1) sin2 α cos2 αe−2iϕ

and with them the mean value of the hamiltonian

〈φ(α, ϕ)|Ĥ|φ(α, ϕ)〉 = −εN
2

(cos(2α) +
κ

2
sin2(2α) cos(2ϕ))

given in terms of κ = (N − 1)V/ε. Instead of showing a plot of the energy as a function of

the two variational parameters we give in Fig 1 the Python code required to create such a

plot easily in a standard Linux distribution. The reader is encouraged to type in and run

the code with di�erent choices of the parameters.

Instead of solving the HF equation we will proceed to minimize the energy as a function

of the two parameters α and ϕ. It turns out that the lowest energy solution corresponds to

ϕ = 0 and therefore the minimization is for a simple one dimensional function. The mean

�eld energy as a function of the variational parameter ϕ can be written as

〈α|Ĥ|α〉 = −εN
2

(
cos(2α) +

κ

2
sin2(2α)

)
(5)

where κ is a function of the interaction strength V and the single particle energy spacing ε,

i.e. : κ = (N−1)V
ε

.

In Fig 2 the mean �eld energy is depicted as a function of α for di�erent values of κ. For

κ < 1 a single minimum located at α = 0 is observed while for κ > 1 a characteristic two-well

structure appears with the minima located at α = ±1
2

arccos( 1
κ
) (mean �eld solution). The

α 6= 0 Slater determinant is interpreted as a �deformed" wave function and the transition at

κ = 1 is referred as a transition to a �deformed" system.
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from pylab import ∗

de f H(a , f ) : r e turn −e∗omeg/2 ∗ (np . cos (2∗ a )+0.5∗ka∗np . s i n (2∗ a )∗∗2∗ cos (2∗ f ) )

n = 256

a = np . l i n s p a c e (0 , 3 . 1415 , n)

f = np . l i n s p a c e (0 , 3 . 1415 , n)

X,Y = np . meshgrid ( a , f )

axes ( [ 0 . 0 2 5 , 0 . 0 2 5 , 0 . 9 5 , 0 . 9 5 ] )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Lipkin model parameters

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

e=1

omeg=15

ka=2.5

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

contour f (X, Y, H(X,Y) , 8 , alpha =.75 , cmap=cm. hot )

C = contour (X, Y, H(X,Y) , 8 , c o l o r s ='black ' , l i n ew id th =.5)

c l a b e l (C, i n l i n e =1, f o n t s i z e =10)

x t i c k s ( [ ] ) , y t i c k s ( [ ] )

# s a v e f i g ( ' . . / f i g u r e s /contour_ex . png ' , dpi=48)

show ( )

Figure 1: Python code to plot the Lipkin's model energy as a function of the variational parameters

α and ϕ.
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Figure 2: The HF energy of the Lipkin model as a function of α and for di�erente values of the

parameter κ. For κ = 1 a transition from a regime with a single minimum at α = 0 to another with

two minima is clearly observed.

To connect the deformed mean �eld wave function with a parity-breaking Slater deter-

minant the parity quantum number has to be assigned to any of the quantum numbers of

the model. The easiest way to obtain a parity-breaking |α〉 is to have a negative parity K̂+

operator (see Eq. (4)). The K̂+ operator connects states with the same quantum number p

but belonging to di�erent σ shells. By assigning given parities to the p, σ = +1 states and

the opposite to the corresponding state p, σ = −1 a negative parity K̂+ operator is obtained.

A simpler assignment is to identify σ as the parity quantum number. In the calculations
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that follow this assignment is equivalent up to a phase to the former and I will use it in the

following.

Once the parity quantum number has been assigned one can wonder how well the two

shells LMG model can describe the physics of octupole deformation. The onset of octupole

deformed shapes is associated with the coupling of the intruder sub-shell (l, j ) and the

nearby normal parity sub-shell (l -3, j -3). The regions of nuclei with strong octupole

correlations correspond to particle numbers around 34 (g9/2 p3/2 coupling), 56 (h11/2 d5/2

coupling), 88 (i13/2 f7/2 coupling) and 134 (j15/2 g9/2 coupling), i.e. the tendency toward

octupole deformation occurs just above closed shells. Therefore, it is reasonable to think

that the physics of octupole deformation is almost contained in the coupling of the (l, j )

and (l - 3, j - 3) sub-shells. In the study of the octupole degree of freedom the neglecting of

non-axial e�ects is a reasonable assumption and, therefore, only the coupling between states

with the same jz is allowed. In this instance, the (l, j ) and (l - 3, j - 3) coupling can be

modeled by two shells of opposite parity and the same number of particles in each sub-shell,

where a particle in one shell can only be scattered to a state in the other shell having the

same quantum numbers of the original state. This is the physical situation described by the

Lipkin model.

Although the �monopole-monopole" two-body interaction of the LMG model can hardly

contain the richness of the full two-body interaction part involved in the appearance of

octupole deformation e�ects, the results of the model at the mean �eld level compare qual-

itatively well with calculations carried out in more realistic cases [13]. In such realistic

calculations, a constrained HFB calculation was carried out using the octupole operator

as constraint. The HFB energy plotted as a function of the mean value of the constraint

(q3 = 〈Q̂30〉) shows the characteristic two-well structure and q3 → −q3 degeneracy seen in

the LMG model. By rede�ning the α scale Fig 2 could correspond to any of the energy

curves of those realistic cases. This qualitative agreement at the mean �eld level gives con-

�dence in the use of the LMG hamiltonian as a model suited to describe the gross features

of octupole deformed systems.
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V. PAIRING CORRELATIONS, THE BCS AND THE HARTREE- FOCK- BO-

GOLIUBOV METHOD

In order to describe the short range correlations that lead to the phenomenon of super-

�uidity in the atomic nucleus in a mean �eld scheme a generalization of the HF method is

required. Instead of the unitary transformation of Eq introduced in the HF case one is forced

to introduce quasiparticle creation and annihilation operators which are linear combinations

of both creation and annihilation single particle operator. The mixing of creation and anni-

hilation operators is a clear indication that the transformation can break the particle number

symmetry and therefore a product wave function built from those quasiparticle operators

will not be an eigenstate of the number of particles operator. We will start our theoretical

description by introduction the BCS method developed originally to describe superconduc-

tivity and soon after applied in nuclear physics to explain a wealth of experimental data.

The idea of the BCS method is to consider canonical transformations of the form

αk = ukck + vkc
+
k̄

αk = ukck − vkc+
k

where k denotes the time reserved of the quantum number k. The parameters uk and vkare

not free as they have to satisfy the constraint u2
k + v2

k = 1. The corresponding wave function

is de�ned as the vacuum of the annihilation operators

|BCS〉 = N
∏
k

αk|−〉 =
∏
k>0

(uk + vkc
+
k c

+
k̄

)|−〉

The mean value of the number of particles with quantum number k operator is given by

〈BCS|c+
k ck|BCS〉 = v2

k.

This result allows to interpret the parameters v2
k as the occupancy of the orbital k. The

theory developed so far is invariant under time reversal by construction and therefore is only

suited to describe nuclei with an even number of protons and neutrons. The extension to

odd-A systems will be discussed below. It is also clear from the structure of the BCS wave

function that it breaks the number of particles symmetries as can be shown by looking at

its structure for a four particle system

|BCS〉 = u1u2 + u1v2c
+
2 c

+
2̄
|−〉+ (1⇔ 2) + u1v2u2v1c

+
1 c

+
1̄
c+

2 c
+
2̄
|−〉.

20



It is clearly seen that the BCS wave function is a linear combination of states with 0, 2

and 4 particles. We also notice that states with an odd number of particles cannot enter

into the BCS wave function as written. This fact is expressed by saying that the BCS

wave function preserves the �number parity� symmetry (if the number of particles in the

linear combinations are even or odd numbers). The wave function just described is said to

have even �number parity�. To describe odd-A systems we need wave functions with odd

number parity and therefore an extension of BCS (blocked BCS) is required to treat those

systems. The generalization of BCS to allow at the same time transformations among the

single particle creation and annihilation operators gives rise to the celebrated Hartree- Fock-

Bogoliubov (HFB) method.

In the standard HFB method [? ] quasi-particle operators β+
µ are introduced as linear

combinations of the creation and annihilation single particle operators corresponding to an

arbitrarily chosen (usually a Harmonic oscillator) basis

β+
µ =

∑
m

Umµc
+
m + Vmµcm. (6)

The HFB ground state wave function is de�ned by the condition of being the vacuum of

all the quasi-particle annihilation operators, that is βµ|φ〉 = 0. A more concise de�nition

is given by |φ〉 =
∏

µ βµ|0〉 where the index µ run over all the quasi-particle annihilation

operators that do not annihilate the true vacuum |0〉. The previous results will describe the

ground state of an even-even nucleus as it can be shown that a paired HFB wave function

is a linear combination of product wave functions with an even number of particles. On the

other hand, odd-particle systems are handled by the �blocked� HFB wave functions

|φ̃〉µB = β+
µB
|φ〉 (7)

where µB is any of the quasi-particle indexes compatible with the symmetries of the odd-

particle system as, for instance, the K quantum number or the parity. The Bogoliubov

transformations in conveniently written in matrix form β

β†

 =

 U+ V +

V T UT

 c

c†

 ≡ W+

 c

c†

 (8)

that introduces the matrixW. To simplify even further the notation it is common to introduce
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the set of quasiparticle operators

αµ =

 βµ µ = 1, . . . ,M

β+
µ−M µ = M + 1, . . . , 2M

αµ = (β1, . . . , βM , β
+
1 , . . . , β

+
M)

as well as the corresponding single particle operators

a ≡ (c, c†).

With the compact notation the Bogoliubov transformation of Eq (6) is written as

α = W †a

The Bogoliubov transformation is a canonical transformation that preserves the canonical

commutation relations (written in compact notation)

{aµ, aν} = σµν =

0 I

I 0

 .

This condition imposes the condition W †σW = σ on the Bogoliubov transformation matrix.

This condition implies that the matrix W is similar to a matrix of the group SO(N) matrix.

The HFB wave function |HFB〉is built by requiring it to be the vacuum of the annihilation

operators βµ, that is βµ|HFB〉 = 0. The connection between the HFB and the BCS meth-

ods is given by the Bloch-Messiah theorem that states that the W transformation can be

decomposed as the product of three successive transformations

W =

 D 0

0 D∗

 Ū V̄

V̄ Ū

 C 0

0 C∗


the D and C transformations correspond to unitary transformations. The D transformation

transforms the original single particle basis in the canonical basis c → a (to be char-

acterized in a more transparent way below). On the other hand, the C transformation

represents an often irrelevant transformation among quasi-particles and �nally Ū , V̄ are the
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block-diagonal matrices

U =



0
. . .

0

u1 0

0 u1

. . .

uN

uN

1
. . .

1



V̄ =



1
. . .

1

0 v1

−v1 0
. . .

0 vN

−vN 0

0
. . .

0


that implement the BCS transformation among the single particle states of the canonical

basis.

Once the Bogoliubov transformation is de�ned we have to �nd the way to compute mean

values of operators. The task is simpli�ed by the introduction of the �generalized density

matrix�

R = 〈a†a〉 =

 ρ κ

−κ∗ 1− ρ†


The di�erent blocks entering the de�nition of R correspond to the density matrix ρmm′ =

〈φ| c†m′cm |φ〉 = V ∗V T and the pairing tensor κmm′ = 〈φ| cm′cm |φ〉 = V ∗UT . The density
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matrix ρ is the analogous of the density matrix in the HF theory whereas the pairing tensor

is a quantity directly related to the existence of pairing correlations and is zero in the HF

case (as it should be, because in the particle number preserving HF case it corresponds to

the mean value of an operator not preserving particle number). It is not di�cult to prove

that the density matrix ρ is diagonal in the canonical basis and κ acquires a simple block

structure where each of the blocks have the form 0 vk

−vk 0

 .

For subsequent developments it is interesting to introduce the quasiparticle density matrix

Rµν = 〈α†µαν〉 =

 〈β†mβν〉 〈βmβν〉
〈β†mβ†ν〉 〈βmβ†ν〉


which is connected to the particle density matrix by the Bogoliubov transformation

R = WRW †.

The quasiparticle density matrix has a diagonal structure in the simple case where the M

diagonal elements are zero and the remaining M are one

R =

 0 0

0 I


as can be easily proved by taking into account that the HFB wave function is the vacuum

of the quasiparticle annihilation operators as well as the commutation relations for the

quasiparticle operators. For blocked HFB wave functions |φi〉 = β+
i |φ〉 used to treat odd-A

systems the quasiparticle density matrix is given by

Ri =

 Ii 0

0 I− Ii


where the index i is that of the �blocked level� and the matrix Ii is a matrix with all its

elements equal to zero except the �i�-th element in the diagonal which is one. Finally, the

quasiparticle density matrix of a statistical collection of HFB excitations like the one that

describes a macro-canonical system in equilibrium at temperature T is given by

RT =

 f 0

0 1− f


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In such a system the mean values have to be replaced by the statistical average represented

by the trace of a given statistical operator D. The advantage of the general formalism to

be developed below is that it is equally valid for the three cases what allows to develop the

general HFB theory in an uni�ed way.

The Bogoliubov coe�cients are determined by the dynamics of the system by invoking the

variational principle on the energy. The energy can be computed using the generalization of

Wick's theorem to quasi-particles involving contractions that are given by the density matrix

and pairing tensor described above. In the process of writing the energy is convenient to

introduce the HF hamiltonian h and the pairing �eld ∆ de�ned by

hll′ = 〈φ|
{[
cl, Ĥ

]
, c†l′
}
|φ〉

∆ll′ = 〈φ|
{[
cl, Ĥ

]
, cl′
}
|φ〉

and given in terms of the two body interaction matrix elements vll′mm′ and the density

matrix and pairing tensor by

Γll′ =
∑
qq′

vlq′l′q ρqq′

∆ll′ =
1

2

∑
qq′

vll′qq′ κqq′

The HF potential Γ is just the HF hamiltonian without the kinetic energy h = t+Γ. Finally

the mean value of the Hamiltonian is given by the trace of all the involved matrices

〈H〉 = Tr(tρ) +
1

2
Tr(Γρ)− 1

2
Tr(∆κ∗)

In order to introduce into the formalism the density matrix R it is convenient to de�ne the

associated �hamiltonian matrix�

H =

 h ∆

−∆∗ −h∗


and the kinetic energy

T =

 t 0

0 −t∗


to write

〈H〉 =
1

4
Tr [(H + T )S]
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where

S =

 ρ κ

−κ∗ −ρ∗

 = R−

 0 0

0 1


A useful property to be used later is

Tr [(H1 − T )S2] = Tr [(H2 − T )S1] (9)

where H1 and H2 represent the hamiltonian matrices computed with the densities in S1 and

S2. Once established that the energy is a functional of the density we have to express the

variations of the density in term of the correct variational parameters. To this end we will

use the generalized Thouless theorem: given an HFB wave function |φ〉 with Bogoliubov

amplitudes W , we can obtain another HFB wave function |φ′〉, by means of the exponential

of a general hermitian one body operator

|φ′〉 = eiẐ |φ〉

and

Ẑ = Z0 +
1

2
Tr
[
Z11
]

+
1

2

∑
µν

Zµνα†µαν

The hermitian matrix Z has the traditional block structure

Z =

 Z11 Z20

−Z20∗ −Z11∗


where Z11 and Z20 are hermitian and skew-symmetric respectively. When acting on a set of

quasiparticle operators α = W †a with amplitudes W (0), the exponential operator produces

another set of quasiparticle operators α′ = W †(Z)a with amplitudes W (Z)

α′ = eiẐαe−iẐ = W †(Z)a

The new Bogoliubov amplitudes are related to the original ones by

W (Z) = W (0)eiZ

By construction the new setW (Z) satisfy the requirement to be a canonical transformation.

The density matrix R(Z) = 〈φ′|a+a|φ〉is a function of the parameters of the Z matrix

R(Z) = W (Z)RW †(Z) = W (0)eiZRe−iZW †(0) and therefore the variation of the density
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δR = R(Z) − R(0) is simply given by δR = W (0)
(
eiZRe−iZ − R

)
W †(0). Expanding in a

power series the exponential we arrive after some algebra to

δR = δR(1) + δR(2) + . . . = W (0)

[
i [Z,R]− 1

2
[Z, [Z,R]] + . . .

]
W †(0).

From here it is easy to guess the n-th term

δR(n) = W (0)

[
in

n!
[Z, [· · · [Z,R]]] + . . .

]
W †(0)

The matrix S entering the expression of the energy can be expanded accordingly and it

turns out that δS(n) = δR(n). We are now in the position of computing the variation of the

HFB energy to establish the HFB equations. The HFB energy is given by

〈φ′|H|φ′〉 (Z) =
1

4
Tr [(H(Z) + T )S(Z)] (10)

At this point it is convenient to write the block hamiltonian matrix in compact form

Hµν(Z) = Tµν +
1

2

∑
ρσ

WµνρσRσρ(Z) = Hµν(0) + δHµν (11)

where the generalized interaction matrix elements Wµνρσ have been introduced. We will

not need the explicit form of W for the derivation of the HFB equation and they are only

required to study the stability matrix of the HFB or the Randon Phase Approximation

(RPA) matrix. The variation of the energy is then given up to �rst order in Z by

δE = 〈H〉(Z)− 〈H〉(0) =
1

4
Tr[δH(1)S + (H + T )δS(1)] + · · ·

Using the property of Eq (9) we can write Tr [δHS] = Tr [(H− T ) δS] and from here

δE = 1
2
Tr[HδS(1)] + · · · . Using the explicit expression of the �rst order variation of S,

δS(1) = iW (0) [Z,R]W †(0) we �nally arrive to the variation of the HFB energy with

respect to the Z parameters

δE =
i

2
[R,H] : Z + · · ·

where some new notation has been introduced. First the scalar product : de�ned as

A : B =
1

2
Tr(AB) =

1

2

∑
µν

AµνBνµ
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and second the hamiltonian matrix in the quasiparticle basis

H = W †(0)HW (0) =

 H11 H20

−H20∗ −H11∗

 .

The HFB equation corresponds to the requirement that the variation of the energy with

respect to the variational parameters Z to be zero, that is

[R,H] = 0 (12)

Obviously, this equation is invariant under similarity transformations and therefore is fully

equivalent to

[R,H] = 0 (13)

that is the more traditional HFB equation. Eq. (12) is satis�ed if H becomes a diagonal

matrix denoted E. Due to the block structure of this matrix the eigenvalues come in pairs

with one of the members minus the other

E =

 E 0

0 −E


Finally, the HFB equation is equivalent to the non-linear algebraic eigenvalue problem

HW (0) = W (0)E

which is similar in structure to the HF equation. This is a non-linear equation because the

matrix to be diagonalized H depends on the eigenvectors W through the density matrix R.

The standard method of solution is to guess some initial density matrix R(0), with that

density the hamiltonian matrix H(0) is computed and diagonalized to obtain a new set of

Bogoliubov transformation coe�cients W (1) which are used to compute a new density

matrix R(1). The process is reaped until convergence, that is R(n+1) −R(n) is smaller than

some threshold parameter ε (typically of the order of 10−6). There is no guarantee that

this iterative process is converging to a solution and often situations where the iterative

process jumps back and forth between two densities are common. To improve upon this

situation, some degree of �annealing� is introduced in such a way that the n density matrix

is mixed back with the density of step n− 1 and a weight λ

R(n) = (1− λ)R(n) + λR(n−1)
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Choosing conveniently the weight λ convergence is achieved in most of the cases. There are

however more attractive methods to solve the HFB equation that are based on the origin

of the equation, namely the determination of the absolute minimum of the HFB energy as

a functional of the Z parameters. Those are standard minimization methods, like the

gradient method, that use the derivative of the energy with respect to the variational

parameters to determine a direction in the multidimensional space to proceed towards the

minimum. To be more precise, the gradient method uses

Z = −iη[R,H]∗

to determine the wave function of the next iteration. If the step size η is small enough we

have δE = −η
2

∑
µν |[R,H]|2µν which is a negative quantity (that is we are in the right

direction in our search for the minimum energy). The determination of η is kind of an art

as it has to be small enough as to always gain energy but large enough to reduce the

iteration count to a manageable number. In this respect, second order gradient methods

that include information of the curvature (second derivative) are advantageous as they

allow to guess a reasonable value of η apart from modifying the gradient's direction to

achieve the feat of minimizing an exactly quadratic form in just a single iteration.

Let us �nally mention that the HFB equation has to be solved with the constraint on

particle number that the mean value of the particle number operator equals proton and

neutron numbers, that is 〈N〉 = N , 〈Z〉 = Z. As the origin of the HFB equation is

variational we only have to replace the energy functional by

E ′ = E − λZ〈Z〉 − λN〈N〉

where the Lagrange multipliers λZ and λN allow for an unconstrained minimization and have

to be adjusted to impose the desired constraint. The introduction of constraints requires

the replacement of the hamiltonian matrix

H =⇒ H− λNN − λZZ

and some strategy to determine the Lagrange multipliers (or chemical potentials are usually

denoted). In the gradient method the chemical potentials are determined by requiring that

the chosen direction has to be orthogonal to the gradient of the constraints, that is

[R,H− λZZ− λNN] : Z = [R,H− λZZ− λNN] : N = 0
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that is a linear system of two equations for the two chemical potentials. The constraints are

not only used to �x the number of particles on the average but also to study the response

of the systems to external perturbations modifying, for instance, the nucleus' multipole

moments as in the studies of �ssion. By introducing a constraint on the mean value of the

angular momentum operator Jx

〈Jx〉 =
√
I(I + 1)− 〈J2

z 〉

the HFB cranking model is de�ned. It allows to study high spin physics (mostly rotational

bands) where the lowest energy state with angular momentum I is determined. The so called

self consistent cranking (SCC) is routinely used to study the high spin physics of deformed

nuclei. The main characteristic di�erentiating the cranking model from others is the explicit

breaking of time reversal invariance imposed by the Jx constraint. It brings some technical

di�culties that will not be discussed here.

It has to be stressed that the formalism just developed is independent of the kind of

quasiparticle density considered and therefore is valid (with some small adjustments) to

describe the HFB equation for odd-A systems (blocked HFB) and also the HFB equation

for �nite temperature systems.

VI. SOME EXAMPLES

In the following I will present some examples of application of the HFB theory to describe

some physical cases. I have chosen examples where I am an author of the corresponding

publication not because I consider the calculation superior to others but just for the easy

access to the �gures presented. Therefore, all the examples presented will correspond to

calculations with the �nite range Gogny force.

The �rst calculation corresponds to the potential energy felt by an isotope of Nobelium

in its way to �ssion through a quadrupole deformation of its ground state [4]. In this case

the HFB equation for 254No is solved by constraining on the mean value of the axially

symmetric quadrupole moment 〈Q20〉. The energy thus obtained E(Q20) is plotted in the

�gure as a function of Q20 (in barn=100 fm2). Several curves are represented depending on

the inclusion of beyond mean �eld e�ects (ZPE) or the consideration of re�ection symmetric

solutions (Q30 = 0). Along with the curves, the real matter density isosurface is plotted

30



Figure 3: Fission path to �ssion for the nucleus 254No

for relevant quadrupole moments. An evolution to a two fragment solution is observed.

The lowest energy one breaks re�ection symmetry and therefore leads to a �ssion split with

di�erent mass fragments in good agreement with the experimental results.

In the second example another constrained calculation constrained on the quadrupole

moment of the nucleus around the spherical con�guration is performed [5]. The aim of this

study is the understanding of some low lying 0+ states in neutron de�cient Pb isotopes that

are thought to be associated to di�erent nuclear shapes (oblate deformation, spherical and

prolate one). This constitutes probably the most outstanding example of shape coexistence

in the atomic nucleus. In the plot the HFB energy is plotted as a function of the quadrupole

deformation q or the β2 deformation parameter (upper x axis). Three minima are observed

in all the cases considered that correspond to prolate, spherical and oblate minima. The

isosurface of the matter density is plotted again along with the energy. The nuclei studied

are some neutron de�cient lead isotopes.

We now turn to an example of high spin physics described by the self consistent cranking

model [3]. The nucleus under consideration is 164Er that is known as a paradigmatic example
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Figure 4: Shape coexistence in neutron poor Pb isotopes, as describer with a constrained calculation

with the Gogny D1S interaction.

of rotational band showing the backbending phenomenon. In the upper panel of the plot

the gamma ray energy obtained from the HFB energy (∆E = E(I)− E(I − 2))) is plotted

as a function of the angular momentum of the state of the rotational band I. An steady

increase with I is observed up to I = 14~ where a small dip is observed and the steady

increase is recovered at angular momentum I = 18~. This is the celebrated backbending

phenomenon present in a wealth of rotational bands all over the nuclear chart. As we can

observe, the theoretical results reproduce nicely this delicate e�ect and allow to understand

its origin. The original lowest energy rotational band (that increases quadratically with I

) crosses at I = 14~another excited rotational band with lower curvature. The curvature

of the energy of the rotational band as a function of I is proportional to the inverse of the

�moment of inertia� of the rotational band. The static moment of inertia J (1) is plotted as

a function of I in the lower panel of the �gure as a function of the angular velocity ω which

is proportional to ∆E. The backbending gives rise to the characteristic �S� shape of the

moment of inertia. Before the backbending the moment of inertia corresponds to the ground

32



Figure 5: Backbending phenomenom in the nucleus 164Er as described by self consistent calculations

with the cranking model and the Gogny force D1S

state band whereas after the backbending the moment of inertia is larger and corresponds

to the excited band that, in crossing the ground state band, is at the origin of backbending.

To �nish this �ashy overview of HFB results let me mention the calculation [11] of the

lowest lying energy spectrum of several odd-A isotopes of Radium that show the phenomenon

of re�ection symmetry breaking (octupole deformation). Octupole deformation leads to a

pear like matter distribution similar to the one sketched in the �gure 6.

The structure of the odd-A radium isotopes is computed with a variant of the blocked

HFB equation that preserves time reversal invariance by replacing the pure HFB by an

statistical version where a given orbital and its time reversed partner are both present in the

statistical admixture with the same probability (the celebrated Equal Filling Approximation,

EFA). Each of the states presented are obtained by blocking di�erent HFB quasi-particles
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Figure 6: Realistic shape of an octupole deformed nucleus in its ground state (224Ra). The charac-

teristic re�ection asymmetry is clearly observed.

Figure 7: Excitation spectrum of two Ra isotopes as computed with the EFA and the Gogny D1S

interaction. The results of two sets of calculations, one preserving re�ection symmetry and the

other not, are compared to the experimental spectrum.

with di�erent values of the K quantum number (the projection of angular momentum along

the z axis).

Let me �nish this overview of the mean �eld method by mentioning the present status of

the method and its applications to describe physical properties of the nucleus. At present

the HFB theory is used with e�ective interactions/functionals to describe the binding en-

ergies of nuclei all over the nuclear chart with an accuracy that achieve a mean square
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radius average as low as 0.6 MeV for the HFB-21 model or 0.7 MeV for Gogny D1M. Also

the relativistic mean �eld models achieve a very good performance in this respect. This

impressive reproduction of binding energies comes together with a reasonable description

of radii. However, it turns out that the required precision for astrophysical applications is

still higher. Also the divergence of predictions for nuclei away from the stability line, in the

realm of neutron rich regions, call for additional improvements of the interactions/models

and also for the consideration of beyond mean �eld e�ects that would be the subject of the

next lectures. With those e�ective interactions it is also possible to reproduce many other

properties of nuclei ranging from deformation parameters to moments of inertia or �ssion

half lives. The computed codes required to perform the calculations are available to the

community and the calculations can be performed within the day in most of the cases in a

personal computed. There is no reason why those HFB based models should not be used by

the experimentalists to interpret their results.

There is a vast number of nuclei that have not been extensively studied with mean �eld

methods: they are the odd-A and odd-odd nuclei. The reason is that the HFB theory

has to be replaced by the �blocked HFB�. The blocked HFB break time reversal invariance

and has many more relevant solutions depending upon the quasiparticle to be blocked.

Those technical di�culties are in the process of being softened and in the near future the

application of the HFB theory to those odd-A and odd-odd nuclei would be as easy as

it is now for even-even systems. Another �eld that would bene�t from the developments

in the implementation of the HFB theory is the �eld of K isomers and multiquasiparticle

excitations. Those physical systems can be described using the same �blocking� techniques

as in the odd-A case but considering the blocking of more than one particle at a time. The

study of those systems will allow to extend our understanding of nuclear structure from

the traditional �eld of collective excitations to the still to be explored one of isomers and

multiquasiparticle excitations.

Last but not least, the physics of highly excited con�gurations could potentially bene�t

from the developments of the HFB theory at �nite temperature and e�orts to study �ssion

at �nite temperature are, for instance, of interest at present.
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