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Configuration mixing

We have learned that to restore symmetries one should take linear
combinations of HFB states

Generated by the application of the symmetry operator

with weights dictated by the underlying group structure.

The same idea can be applied to take into account long range
correlations

|Ψσ〉 =

∫
dQfσ(Q)|Φ(Q)〉

be choosing an appropriate set of ”generating coordinates” Q.
The weights can be determined, for instance, recurring to the
variational principle on the energy

Eσ =

∫∫
dQdQ ′f ∗σ (Q)fσ(Q ′)〈Φ(Q)|H|Φ(Q ′)〉∫∫
dQdQ ′f ∗σ (Q)fσ(Q ′)〈Φ(Q)|Φ(Q ′)〉

Please note that the set |Φ(Q)〉 is not necessarily orthogonal with
respect to the Q variable
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Hill-Wheeler

The weights are determined by imposing

δE

δf ∗
= 0

Hill-Wheeler equation∫
dQ ′h(Q,Q ′)fσ(Q ′) = Eσ

∫
dQ ′n(Q,Q ′)f (Q ′)

with n(Q,Q ′) = 〈Φ(Q)|Φ(Q ′)〉 and

h(Q,Q ′) = 〈Φ(Q)|H|Φ(Q ′)〉
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How to choose Q ?

Good question but no answer ....

The choice of Q depends on the physics you want to describe.

Typically Q is a multipole moment of the mass distribution
Q2µ Q3µ, etc

but it can be ∆N2 (or any other order parameter associated
to a broken symmetry).

Ideally as many as possible should be chosen, but the
computational cost increases with the square of the number of
”generating coordinate” and calculations with more than two
are exceptional. The extreme case would be to take all the
parameters of the Thouless parametrization (more later)
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Solution of the HW equation

Discretize Q =⇒ qi , i = 1, . . . ,N to render HW into an algebraic
equation ∑

j

hi ,j f
σ
j = Eσ

∑
j

ni ,j f
σ
j

Diagonalize the norm overlap ni ,j (hermitian, positive)

ni ,j =
∑
k

Di ,knkD
∗
j ,k

Get rid of eigenvalues smaller than some threshold ε ≈ 10−4

Define gk =
∑

j fjD
∗
j ,kn

1/2
k and |k〉 =

∑
j |Φj〉Djkn

−1/2
k

h̃k,k ′ =
∑
ij

Dikh(i , j)Djk ′n
−1/2
k n

−1/2
k ′

HW becomes ∑
k ′

h̃k,k ′gσk ′ = Eσg
σ
k
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The GCM wave function in the ”natural” basis |k〉

|Ψσ〉 =
∑
k

gk |k〉

|k〉 orthogonal and therefore |gk |2 has the meaning of a probability
(unlike f which is an amplitude for non-orthogonal basis)
Mean values 〈Ψ|O|Ψ〉 =

∑
k g
∗
kOkk ′gk ′

Restoring symmetries on |Ψ〉 is easy as the projector P only adds
another set of integrals
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Overlaps

The ingredients entering the HW equation are overlaps of
operators between HFB wave functions.
The pfaffian formula and the GWT of Lecture 2 will be useful,
remember the kind of general overlaps we have to compute

〈ϕ|βiβjβkβlc+
mc+

n cpcqβ̃
+
r β̃

+
s β̃

+
t β̃

+
u |ϕ̃〉

leading to 11 !! = 10 395 contractions.
For density dependent forces, like Skyrme, Gogny, Relativistic mean
field, etc the issue of the prescription for the density dependence to
be used in the hamiltonian overlap is still problematic
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Example

Gogny D1S calculation, Yoccoz vs
Thouless moment of inertia
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Spherical and deformed

L.M. Robledo GCM



Octupole correlations
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Octupole correlations
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Octupole correlations

Relevant for mass tables ?
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The GCM - RPA connection

The RPA is usually viewed as the small amplitude limit of TDHFB,
but can also be derived from the GCM

Take as generating coordinates all the parameters of the
Thouless formula

|Z〉 = exp(
∑
µν

Zµνα
+
µα

+
ν )|ψ0〉

and

|Ψ〉 =

∫
dZf (Z)|Z〉

Expand 〈Z′|Ĥ|Z〉/〈Z′|Z〉 up to second order

Assume Gaussian overlaps 〈Z′|Z〉 ∝ exp(−Z′∗Z)

Introduce the above in the Hill-Wheeler equation

After some manipulations the RPA equation is obtained

(*) Jancovici&Schiff, Brink &Weiguny
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Approximations: GOA and Collective hamiltonian

The HW equation is an integral equation dealing with
non-local quantities like the hamiltonian and norm overlaps.

Typical count: Q2 − Q3 calculation with 50 quadrupole
deformations and 20 octupole deformations =⇒ 500.000
overlaps to compute with a computational cost two times
larger than a typical HFB iteration. Requires 10 times more
time than the whole HFB calculation.

In addition, when quadrupole and octupole moments in the
overlap 〈Q2Q3|H|Q ′2Q ′3〉 are really different the overlap is very
small

Typically 〈Q2Q3|Q ′2Q ′3〉 ≈ exp(−
∑

ij γij(Qi − Q ′j )
2). The

norm behaves like a gaussian (Gaussian overlap approximaton
GOA)

〈Q2Q3|H|Q ′2Q ′3〉/〈Q2Q3|Q ′2Q ′3〉 is a smooth function and can
be approximated by a Taylor expansion
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Then

〈Q2Q3|H|Q ′2Q ′3〉 ≈ (c0+C
(1)
Q2

∂

∂Q2
+C

(1)
Q3

∂

∂Q3
+· · · )〈Q2Q3|Q ′2Q ′3〉

Plugging the above in the HW transforms it into a differential
equation

(−~2
∑
ij

M−1
ij

∂

∂Qi

∂

∂Qj
+V (Q2,Q3))gα(Q2,Q3) = εαgα(Q2,Q3)

where the ”collective mass” tensor Mij(Q2,Q3) is a function
of C (0), C (1) and C (2)

The ”potential energy” is

V (Q2,Q3) = 〈Q2Q3|H|Q2Q3〉+ ε0(Q2,Q3)

where the ε0 is the ”zero point energy correction”.

Non local kernels replaced by local quantities plus functions of
derivatives
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The non-local HW is reduced to a local ”collective
hamiltonian equation” where the parameter (mass tensor and
zero point energy correction) are evaluated locally.

The process has to be repeated for each observable (mass
moments, transition probabilities, etc) with their own
”collective mass” term and ”zero point” correction.

The approximation works well whenever there are no sudden
configuration changes in |Q2Q3〉 like level crossings that
render the hamiltonian overlap a ”non-smooth” function.

The ”collective wave functions” are easy to interpret as their
modulus has, at the level of approximation considered, the
meaning of a probability.
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Borh hamiltonian ?

The Borh hamiltonian is a kind of collective hamiltonian for
the β and γ quadrupole deformation parameters.

It includes a collective rotational energy involving moments of
inertia that change with the angular momentum of the
nucleus I

The ”collective masses” take the form of the GCM collective
hamiltonian or the form deduced from ATDHFB.

The moments of inertia are usually the Thouless-Valatin
moments of inertia computed by cranking the system with a
small angular velocity ω

Its form suggests it could be deduced from a GCM with β and
γ as generating coordinates and projecting on good angular
momentum.

Such derivation in not available for the the moment

Nicely reproduces yrast, β and γ rotational bands
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Difficulties and ideas to avoid them

The ”collective hamiltonian” approximation has its own
difficulties associated to a poor evaluation of the collective
masses

It is not clear how to extend to odd-A nuclei (the norm is no
longer gaussian)

It is better to stick with the HW equation but using the
parabolic approximation for operator overlaps while keeping
the exact values for the norm overlap to avoid level crossing
problems

Mixing these ideas with the ”large deformation limit” of
projection could be a reasonable and computationally feasible
alternative to more sophisticated methods. (Still under
development)
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Multi-quasiparticle excitations

Instead of |Φ(Q)〉 we can choose |Φ〉, α+
k α

+
k ′ |Φ〉,

α+
k α

+
k ′α

+
k ′′α

+
k ′′′ |Φ〉, as generating coordinate

or a generalization of it including some ”collective” degrees of
freedom |Φ(Q)〉, α+

k α
+
k ′ |Φ(Q)〉, etc

this idea has been successfully applied to nuclei in the
Projected Shell Model of Hara and Sun but with schematic
P+Q interactions.

In this situation the pfaffian version of the GWT will be
extremely useful

Specially useful in odd-A systems where the coupling to
three-quasiparticle and higher excitations are very relevant
(particle-vibration coupling)
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