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ABSTRACT

In the present lectures, we discuss how it has become possible to represent the strongly
interacting nuclear many-body system of A nucleons in lowest order as nucleons moving
independently in an average potential. We start from a description of nucleon forces and
how to progress from the early concept of Yukawa to up-to-date nucleon-nucleon interac-
tions, describing nucleon scattering data very well. We next discuss the basis structure of
the independent-particle model and show how including the residual nucleon-nucleon inter-
actions, first for a few nucleons and progressing to systems with many interacting protons
and neutrons, various excitation possibilities arise. These encompass nuclear pairing as well
as the appearance of low-lying collective modes of motion.
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I. INTRODUCTION

Before attempting to start a description of the atomic nucleus as a bound system of
interacting nucleons, it is paramount to learn about the nature of the nucleon-nucleon in-
teractions. We start from the basic properties of nucleon-nucleon interactions as manifested
from free nucleon-nucleon scattering. After a short reminder of the Schrödinger equation
describing scattering of two nucleons through a central potential V(r), we show that the
properties of nucleon-nucleon scattering can be described by a set of nuclear phase shifts.
We discuss these results for the dominant scattering channels and their importance in under-
standing the nucleon-nucleon interaction as a function of the collision energy in free space.
The next step is to derive an analytical form describing the experimental scattering data. We
are able to constrain the most general form using general invariance properties from quantum
mechanics which the nucleon-nucleon interaction should obey. We stress in particular the
importance of a tensor term, which is related to the Yukawa picture using one-pion exchange
as one of the decisive elements describing nucleon-nucleon forces, as well as the need of a
spin-orbit term. We present an example of one of the early realistic nucleon-nucleon forces
(meaning the force is able to describe nuclear phase shifts up to Elab ∼ 400 MeV) as well
as the more recent Argonne potentials. These nucleon-nucleon forces describe the extensive
experimental data set of nucleon-nucleon phase shifts extremely well as will be illustrated.
Moving to very recent work, it is shown that the most important central components of the
free nucleon-nucleon interaction can be derived from lattice QCD calculations.

Attempting to describe the very light nuclei such as 3H and 3He starting from realistic
nucleon-nucleon interactions, however, leads to underbound nuclei. This shows the need of
introducing three-nucleon interaction terms which is illustrated for the nuclei up to mass
number A=12 (12C), indicating the need of both two-nucleon and three-nucleon terms to
describe these very light nuclei from ab-initio calculations. We close by facing the problems
that arise when trying to use these realistic interactions in order to describe the effective
interactions inside the nucleus, containing many interacting protons and neutrons.

The stability of nuclei and abundances of the elements (BE(A) ∼ A), as well as early
experimental data on nuclear ground-state spins and magnetic moments in many odd-mass
nuclei were all pointing towards the existence of a central potential in which nucleons move,
to a large extent, as independent particles. In a first part we discuss the concept of an
independent-particle model, showing that a harmonic oscillator potential enlarged with a
centrifugal l.l and spin-orbit l.s term, is able to describe consistently the proton and neutron
numbers corresponding to nuclei with increased stability. We go on showing in some detail
the salient features of the shell-model structure (single-particle energy spectra and wave
functions, the shell-gaps in the spectra,...).

2



We then discuss nuclei containing two nucleons outside of a closed-shell system and
analyze the energy correction that results from the interaction between these two “valence”
nucleons. In order to obtain quantitative results, we start from simple central forces to
derive the interaction energy, splitting the degeneracy of the two-nucleon system. A generic
property shows up, i.e., the two nucleons (protons or neutrons) preferentially pair up in a
state of angular momentum J = 0. We illustrate this important result with examples such as
the separation energy of a nucleon from a given nucleus as well as analyzing energy spectra
of nuclei with two nucleons outside (or missing) of a closed-shell core.

We move on to make the simple analyses, in which the two nucleons are constrained to one
single-particle orbital, more realistic. In general, the two nucleons can occupy more single-
particle states and consequently give rise to a number of possible configurations, forming a
quantum mechanical basis to solve the nuclear energy eigenvalue problem, starting from a
given two-body interaction. We present, in detail, the procedure for a simple nucleus 18O,
in which the two valence nucleons can move in the N=2 (1d5/2, 2s1/2, 1d3/2) orbitals. We
discuss the results in the case of 180 and 210Po, pointing out the presence of a generic pairing
results that two-nucleon correlations exhibit throughout the nuclear mass table.

Starting from the detailed discussion for two-nucleon systems, we generalize the nuclear
energy eigenvalue problem to systems with a large number of active protons and/or neu-
trons moving in a given model space (configuration space). To do so we discuss (i) how to
build a basis needed to expand the full wave function, emphasizing the rapid increase in
dimension of the eigenvalue problem and the corresponding computational issues, and, (ii)
how to handle the nucleon-nucleon interaction acting inside the atomic nucleus. The latter
point needs particular attention since one can (i) start from relatively simple schematic in-
teractions (putting forward an analytical form), (ii) start from the nuclear two-body matrix
elements, called the empirical effective interaction, which are used as parameters that are
fixed by fitting the calculated observables (energy, lifetimes in γ- and β,..) to a large set
of the corresponding nuclear data in a given region of the nuclear mass table, or, (iii) start
from a realistic interaction, however, adapting this force for use inside an atomic nucleus
constructing the nuclear G-matrix.

We subsequently go through the various steps in order to apply the nuclear shell model
for the rather complex systems of many interacting nucleons (encompassing both protons
and/or neutrons). We illustrate the advances that have been made from the early 1p-shell
nuclei (1965) towards recent calculations with very big model spaces and many nucleons. In
particular we show results for the sd shell and the fp shell. In the latter case, it is shown
that structures reminiscent of collective modes of motion (macroscopic) appear. We make
a side-step to show what may be the deeper origin of such collective modes resulting from a
purely microscopic shell-model approach.

Finally, we consider nuclei with a single closed shell, such as the N=126 isotones and
the Sn isotopes. We point out that the characteristic energy spectra resulting from the
shell-model calculations can be understood from an unexpected point of view, emphasizing
symmetries connected to the formation of nucleon pairs in long series of isotones (isotopes).

II. NUCLEON-NUCLEON FORCES AND VERY LIGHT NUCLEI

Since our basic assumption in using the shell-model to approximate the complicated
nuclear many-body problem of A nucleons interacting inside the atomic nucleus is the use
of an effective ‘in-medium’ interaction, we will start by giving some general discussion of
those forces used throughout the present lectures.

It is standard to determine a general form by imposing certain symmetry constraints (see
further in the text), and the strength of this general form is fitted to experimental data
describing free nucleon-nucleon scattering up to ≃ 350 MeV laboratory energy [1].

3



A. The Bare Nucleon-Nucleon Force

The bare nucleon-nucleon force describes the interaction between two free nucleons (see
Figure 1). It is understood that the effect of the Coulomb-interaction is treated separately,
so we focus entirely on the effect of the strong interaction between the nucleons.

The derivation of the interaction between free nucleons is based on some important as-
sumptions [2]:

- we consider no substructure in the nucleon, and consider nucleons to describe the
essential degrees of freedom,

- the A nucleons interact via a potential,

- relativistic effects are negligible,

- only two-body forces are considered.

The first assumption states that the interaction between two nucleons goes via a potential.
The potential depends only on those two nucleons, and the dependence on their coordinates
can be expressed in the most general way as:

V (1, 2) = V (~r1, ~p1, ~σ1, ~τ1, ~r2, ~p2, ~σ2, ~τ2), (1)

where ~ri denotes the spatial coordinate of nucleon i = 1, 2; ~pi the momentum; ~σi the spin,
and ~τi the isospin coordinates.

1. Symmetry Properties and General Structure

The potential V (1, 2) has to fulfil a number of symmetry properties, imposed by the
nature of the strong interaction between free nucleons:

• hermiticity

• invariance under an exchange of the coordinates

V (1, 2) = V (2, 1). (2)

• translational invariance

V (1, 2) = V (~r, ~p1, ~σ1, ~τ1, ~p2, ~σ2, ~τ2), (3)

with ~r = ~r1 − ~r2 the relative spatial coordinate.

• Galilean invariance

V (1, 2) = V (~r, ~p, ~σ1, ~τ1, ~σ2, ~τ2), (4)

with ~p = 1
2
(~p1 − ~p2) the relative momentum.

• invariance under space reflection (parity conservation)

V (~r, ~p, ~σ1, ~τ1, ~σ2, ~τ2) = V (−~r,−~p, ~σ1, ~τ1, ~σ2, ~τ2). (5)
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• invariance under time reversal

V (~r, ~p, ~σ1, ~τ1, ~σ2, ~τ2) = V (~r,−~p,−~σ1, ~τ1,−~σ2, ~τ2). (6)

• rotational invariance in coordinate space
Also introducing the orbital angular momentum ~L = ~r × ~p, only terms of the form
~σ1 · ~σ2, (~r · ~σ1)(~r · ~σ2), (~p · ~σ1)(~p · ~σ2), (~L · ~σ1)(~L · ~σ2) + (~L · ~σ2)(~L · ~σ1) are possible.

Multiplication with an arbitrary function of r2, p2 and ~L · ~L does not affect this
symmetry constraint.

• rotational invariance in isospin space
Only terms of the form:

V0 + Vτ~τ1 · ~τ2, (7)

are allowed.

A more elaborate discussion of the symmetry properties is given by Ring and Schuck [2].
One can make several combinations with good symmetry, but we present those combi-

nations that have been used mainly in order to construct a realistic bare two-body nucleon
interaction.

a. Central Force Component The central forces are local forces since they do not de-
pend on the velocity, and contain only scalar products of the major nucleon variables ~σ and
~τ :

VC(1, 2) = V0(r) + Vσ(r)~σ1 · ~σ2 + Vτ (r)~τ1 · ~τ2 + Vστ (r)~σ1 · ~σ2~τ1 · ~τ2. (8)

This form can be rewritten using certain exchange operators. One defines the spin exchange
operator P̂ σ:

P̂ σ =
1

2
(1 + ~σ1 · ~σ2), (9)

and, likewise, the isospin exchange operator P̂ τ :

P̂ τ =
1

2
(1 + ~τ1 · ~τ2). (10)

The expectation value of P̂ σ becomes:

〈SMS|P̂ σ|SMS〉 = 〈SMS|
1

2

(
1 + 2(~S2 − ~s 2

1 − ~s 2
2 )

)
|SMS〉

= S(S + 1) − 1

=

{
1 for S = 1
−1 for S = 0. (11)

If P̂ σ would act on a two-particle state with spin S = 1 (spin-triplet state or spin-symmetric
state), there is no change of sign for the spin wave function; if it would act on a S = 0 state
(spin-singlet or spin-antisymmetric), it produces an extra minus sign, to be interpreted as the

interchange of the individual spin coordinates. Similar relations hold for P̂ τ . The exchange
operator P̂ r for the spatial coordinate can be defined through the relation:

P̂ rP̂ σP̂ τ = −1, (12)

since the wave function has to be antisymmetric under the interchange of all coordinates of
particles 1 and 2. Using (12), P̂ τ can be rewritten as:

P̂ τ = −P̂ rP̂ σ, (13)
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TABLE I: Different combinations giving rise to a totally antisymmetric two-body nuclear wave
function. The notation 〈~σ1 · ~σ2〉 is a shorthand notation for the expectation value of the operator
in a given two-particle state with total spin S: 〈(1

2
1
2)SMS |~σ1 · ~σ2|(1

2
1
2)SMS〉. Likewise, 〈~τ1 · ~τ2〉 is

a shorthand notation for 〈(1
2

1
2 )TTz|~τ1 · ~τ2|(1

2
1
2)TTz〉.

〈~σ1 · ~σ2〉 〈~τ1 · ~τ2〉 S T spatial

-3 -3 0 0 odd

-3 1 0 1 even

1 -3 1 0 even

1 1 1 1 odd

and the general central force becomes:

VC = VW (r) + VM(r)P̂ r + VB(r)P̂ σ + VH(r)P̂ rP̂ σ. (14)

The coefficients of the different terms in (8) and (14) fulfil the following relation:

VW = V0 − Vσ − Vτ + Vστ , (Wigner force) (15)

VM = −4Vστ , (Majorana force) (16)

VB = 2Vσ − 2Vστ , (Bartlett force) (17)

VH = −2Vτ + 2Vστ .(Heisenberg force) (18)

Yet another way of writing down the central interaction makes use of projection operators:

Π̂σ
s =

1

2
(1 − P̂ σ) , Π̂σ

t =
1

2
(1 + P̂ σ), (19)

Π̂r
o =

1

2
(1 − P̂ r) , Π̂r

e =
1

2
(1 + P̂ r). (20)

TABLE II: Relation between the coefficients of the various representations (equations (8), (14) and
(24)) of the central force.

〈~σ1 · ~σ2〉 〈~τ1 · ~τ2〉 V (~σ1 · ~σ2, ~τ1 · ~τ2) V (P̂ r, P̂ σ) ijΠ̂

1 -3 V0 + Vσ − 3Vτ − 3Vστ VW + VM + VB + VH a13

-3 1 V0 − 3Vσ + Vτ − 3Vστ VW + VM − VB − VH a31

1 1 V0 + Vσ + Vτ + Vστ VW − VM + VB − VH a33

-3 -3 V0 − 3Vσ − 3Vτ + 9Vστ VW − VM − VB + VH a11

Since table I indicates that it is sufficient to know the spin and isospin symmetry in order
to establish the correct antisymmetry of the wave function, one can write the central force
in terms of the operators ijΠ̂, defined as:

ijΠ̂ ≡ (2T+1)(2S+1)Π̂ ≡ 2T+1Π̂2S+1Π̂, (21)

2T+1Π̂ =
1

2

[
1 − (−1)T P̂ τ

]
, (22)

2S+1Π̂ =
1

2

[
1 − (−1)SP̂ σ

]
. (23)
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The expression for the central force then becomes:

VC = VC(r)
∑

i,j={1,3}

aij
ijΠ̂. (24)

The relationship between the various representations of the central force is summarized in
table II.

b. Two-Body Tensor Force Component The two-body tensor force also has a local
character, and has the form:

VT (1, 2) = VT (r) (vt0 + vtt~τ1 · ~τ2)
(

3(~σ1 · ~r)(~σ2 · ~r)
r2

− ~σ1 · ~σ2

)
(25)

VT (1, 2) = VT (r) (vt0 + vtt~τ1 · ~τ2)S12, (26)

and S12 is the tensor operator defined in expression (25). The tensor force is particularly
important since it causes orbital angular momentum mixing. Its presence in the nuclear
force is shown by the non-vanishing quadrupole moment of the deuteron, which cannot be
proven by a pure central forces alone [2].

c. Two-Body Spin-Orbit Force Component The two-body spin-orbit force has a non-
local structure:

VlS(1, 2) = VlS(r)~l · ~S, (27)

with ~S the total spin of the two-body system, and ~l the relative orbital angular momentum
operator for the two-body system. The velocity dependence, or non-local character, enters
the expression through the orbital angular momentum.

d. Radial Dependence The radial dependence of the various contributions can be pa-
rameterized using simple central potentials. Various forms are often used:

Yukawa potential: V (r) = −V0
e−µr

µr
,

Gaussian potential: V (r) = −V0e
−r2/r2

0 ,

exponential potential: V (r) = −V0e
−r/r0 ,

square well: V (r) = −V0 if r ≤ r0
V (r) = 0 if r > r0.

The strength V0 and range r0 are fitted to the experimental data.
The Yukawa potential [3], however, is based on field theory: the long-distance attractive

tail of the nuclear force is mediated by the exchange of one pion between the interacting
nucleons. The simplest form is derived from the exchange of a single pion. In this case,
1/µ = h̄/mπc is the Compton wavelength of the pion, and is given by µ = 0.70 fm−1.

Although the effective nucleon-nucleon interaction (active in some limited part of the
full Hilbert space and within a nuclear medium) will be largely different from the form of
the free nucleon-nucleon interaction [1], we will start considering the properties of the bare
force. To a good approximation, and incorporating one-pion exchange (OPEP), this latter
force leads to a form of the type [3, 4]:

V OPEP
π =

1

3

f 2

h̄c
mπc

2
{
~σ1 · ~σ2 +

(
1 +

3

µr
+

3

(µr)2

)
S12

}e−µr

µr
(~τ1 · ~τ2), (28)

with c the speed of light, mπ the pion mass, µ ≡ mπc
h̄

= 0.70 fm−1 the reduced pion mass,

and f2

h̄c
= 0.081 ± 0.002 the pion-nucleon coupling constant. The factor S12:

S12 = 3
(~σ1 · ~r)(~σ2 · ~r)

r2
− ~σ1 · ~σ2, (29)

is the tensor operator. Expression (28) holds typically for a separation distance r = |~r1−~r2| ≃
1.5 – 2 fm, but the actual interaction becomes repulsive (in coordinate space) at distances
r ≤ 0.5 fm.
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REACTION CHANNELS

N
N

V(1,2)

S=1, 0  : TRIPLET, SINGLET SPIN STATE

pp, pn and nn scattering states

: even, odd relative angular monentum states

CHARACTERIZED BY ( ,S)

PHASE SHIFTS IN SCATTERING PROCESS

d J

FIG. 1: Scattering free nucleons.

2. Constructing the Bare Nucleon-Nucleon Interaction

Once a general analytical functional form of the two-body potential has been laid out, the
parameters of the various contributions have to be determined. One can accomplish this by
analyzing the scattering properties in the various two-body nucleon-nucleon systems, as well
as the proton-neutron bound state, i.e. the deuteron. Scattering experiments are performed
below the pion-production threshold (∼ 350 MeV). This guarantees the appropriateness of
the non-relativistic approach, and the nucleons involved can be treated as point-like particles
(justifying the assumed existence of a potential). (see Figure 1).

The problem of potential scattering between two nucleons can be described by the 2-
particle Schrödinger equation

[− h̄2

2m1
∆1 −

h̄2

2m1
∆2 + V (1, 2)]ψ(1, 2) = Eψ(1, 2). (30)

Separation in the relative and centre-of-mass coordinates is possible, for radial potentials
depending on the relative coordinate r only (~r = ~r1 − ~r2) and R=1/2(~r1 + ~r2), leads to the
Schrödinger equation

[− h̄2

2mr

∆r + V (r)]ψ(r) = Eψ(r), (31)

An asymptotic solution (with V(r )→ 0 for short-range potentials) can be written as

ψ+
k (r) = ei~k.~r + f(θ, φ)

eikr

r
, (32)

describing the superposition of a plane wave solution and an outgoing spherical wave, de-
scribing the scattering process.
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The plane wave can be expanded in its different partial waves as

∞∑

l=0

il(2l + 1)jl(kr)Pl(cosθ), (33)

and the radial form jl(kr) in the asymptotic region can be expressed as

jl(kr)r→∞ ∝ 1

kr
sin(kr − lπ/2) =

i

2k
[
e−i(kr−lπ/2) − ei(kr−lπ/2)

r
]. (34)

In the asymptotic form of the solution ψ+
k (r), an outgoing spherical wave is present too.

Thus, the radial part in each of the partial waves can be expressed as

ψ+
k (r)r→∞ ∝ i

2k
e−δl(k)[

e−i(kr−lπ/2) − Sl(k)e
i(kr−lπ/2)

r
], (35)

with Sl(k) = e2iδl(k).
In the more realistic cases of nucleon-nucleon scattering, the above equations are more

complicated because the interaction V(1,2) as described in section II.A will, in general
depend on the spin state of the two nucleons which can be in an S=1 or S=0 state and the
orientation of the total spin with respect to the relative angular momentum l (expressed

by the angular momentum coupling (~l, ~S)J as well as on the charge of the nucleons, i.e.,
distinguishing nn,pp and np scattering (also expressed by the isospin T quantum number).
Because of the presence of the tensor force, which can couple relative angular momenta
differing by 2 units, the Schrödinger equations for different values of l, i.e., l=0 and l=2,
become coupled. The phase shifts are now given by δ(l, S)J (k). The general form of the
two-nucleon interaction V(1,2) is used to calculate the theoretical phase shifts that are fitted
to the experimental data-basis of experimentally deduced phase shifts using a least-squares
method, minimizing

∑n
i | δth(l, S)J−δexp(l, S)J |2. These data are given by a set of numbers

(phase shift expressed in radians) as a function of the laboratory scattering energy Elab given
in the notation 2S+1lJ of which an example is shown in Figure 2 and contain the information
about the shape, the strength and the energy dependence of the potential.

There exist a number of potentials that are fitted to nucleon-nucleon scattering data
and the deuteron binding energy. Some of the most famous are listed here: the Hamada-
Johnston potential (which is presented in Figure 3) [5, 6], the Reid soft-core potential [7],
the Tabakin potential [8], the Nijmegen potential [9], the Paris potential [10, 11], the Bonn
potential [12, 13], and the modern CD-Bonn, [14], Nijmegen I + II, Reid93 [15] and the
Argonne potentials [16, 17].

The Argonne potential consists of 8 (or 18) terms:

Vij =
∑

p=1,8(18)

vp(rij)O
p
ij , (36)

with the operators O
p
ij given by:

O
p
ij = {1, ~σi · ~σj , ~Sij,~l · ~S, . . .} ⊗ {1, ~τi · ~τj}. (37)

The potentials have been fitted to 4300 nucleon-nucleon scattering data, and describe the
bare scattering process very well over the energy range (up to 350 MeV laboratory scattering
energy) [18]. They are phenomenological but describe the essential physics: Coulomb forces,
one-pion exchange at the larger nuclear separation distance (r ≃ 1.5 – 2 fm), but also the
intermediate and short-range parts.
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FIG. 2: The nuclear phase parameters for the T = 1 channels with L ≤ 2, up to a laboratory
energy of Elab = 400 MeV. The phase shifts are given in radians. Positive phase shifts indicate
attraction between the nucleons, negative phase shifts repulsion. Figure taken from [4].

The more data are included, the better the agreement; so it is crucial to fit to proton-
proton, neutron-neutron, proton-neutron and deuteron data. Potentials that lack one of
these sets in their parameter fit, provide a worse description for that particular set, as
demonstrated in [19] for various potential models applied to the proton-proton scattering
data.

Even though these potentials provide a precise description of the free nucleon-nucleon
scattering, they are still subject to corrections when proceeding towards light nuclei. Usually,
the potentials fitted to scattering data tend to underbind light nuclei. The correct binding
energy is expected to be found by adding three-nucleon forces [18, 20–23].

An approach different from the ones mentioned above involves writing the nucleon-nucleon
potential as a sum over one-boson exchange potentials [24–31].

Moreover, the inclusion of relativistic effects may prove to be important too: given the
rather small distance scales, it might be necessary to go beyond the meson picture and
to include quark-antiquark pair exchange, as depicted in Figure 4. However, calculations
become intractable because of the strong coupling αs that is too large to allow a perturbative
approach [32].

A review on the present understanding of nuclear forces can be found in [33].

B. Ab-initio calculation of very light nuclei

At this point, one may ask the question if one could not start from ab-initio methods and
start for the lightest nuclei, using a Hamiltonian containing both 2- and 3-body terms such
as

H =

A∑

i

Ti +
∑

i<j

Vi,j +
∑

i<j<k

Vi,j,k . (38)
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FIG. 3: Phenomenological central nucleon-nucleon potential VC as obtained from the analysis of
Hamada and Johnston [5]. The dotted potentials correspond to the one-pion exchange potential
(OPEP) of expression (28). Figure taken from [4].

FIG. 4: (a) Representation of quark exchange between nucleons via the exchange of a quark-
antiquark pair. Antiquarks are depicted as quarks moving backwards in time. (b) The exchange
of a meson is rather similar to this. Figure taken from [32].
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FIG. 5: Energy levels for the light nuclei using a Quantum Monte Carlo (QMC) calculation using
2-and 3-body forces [21].

Because there is no natural central point in an atomic nucleus, this is a very difficult job and
the group of Pandharipande,Carlson,Wiringa,Pieper and co-workers [18, 21–23] has come as
far as mass A=12. The two-nucleon interactions used are parametrized through some 60
parameters that fit all known nucleon-nucleon scattering data with a χ2/data of ≈ 1. In
order to go beyond 2-body systems, a 3-body term needs to be included. These are very
complex calculations (see Figure 5).

The methods used start from a trial wave function ΨJ,π
T that is first constructed for the

given nucleus and optimized and contains information about the way nucleons are distributed
over the lowest 1s1/2, 1p3/2, 1p1/2 orbitals. This trial wave function is then used as the starting
point for a Green-function Monte-Carlo calculation (GFMC) which projects out the exact
lowest energy state with the same quantum numbers by propagating it in imaginary time, or
evaluating Ψ0 = limτ→0exp(−(H − E0)τ)Ψ(trial) [34]. The results are in good agreement
with the data, up to A=10.

Also no-core shell-model studies have been carried out recently, moving as far as A=10
and 12 compatible with present-day computer “technology”(see Barrett et al. [35], for more
details).

III. INDEPENDENT-PARTICLE MOTION AND FEW-NUCLEON

CORRELATIONS

Nuclear physicists, through many years of investigating atomic nuclei, have been able
to find out a lot about the way nucleons are organized inside the nucleus and discovered
a number of simple modes of motion using selective experiments. I will remind you of the
methods used in extracting this information because, most probably, one will have to copy
some of them when exploring unknown territory and we can better learn from the past. The
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FIG. 6: Schematic cross-section for electron scattering off a nucleus as a function of the energy
transfer h̄ω ( in MeV). Different energy regions are highlighted [36].

esssential method is very general and can be taken from the first-year textbooks on physics
when studying an oscillator under the influence of an external, time-varying force field. So,
whenever we like to find out how something sits together, one can either shake it vigorously
and “listen” how the system “responds” or either take it apart into its components. These
two avenues have been taken by

(i) studying the response of the atomic nucleus when being probed by external fiels (elec-
tromagnetic, weak and strong probes),

(ii) studying the ways in which unstable nuclei decay and emit particles or photons in
their way back to stability.

These two principles have been used to disclose some of the essential degrees of freedom
that are active inside the nucleus by studying the various “eigen”-frequencies on which the
nuclear many-body system resonates (see Figure 6).

In this spirit, besides the discovery of the various decay modes that have given deep
insight in the way particles or groups of particles can be emitted from an unstable nucleus,
a number of external probes have been used extensively [36].

a. Scattering experiments using electrons, protons, α-particles, ... gave rise to the notion
of and average charge and mass field with a profile that resembles very well a liquid
drop of charged matter. Moreover, using those probes in ingenious ways, one has been
able to map out the motion of nucleons in well-defined single-particle orbitals, much
like in a Bohr atom, even studying the velocity distribution of nucleons moving inside
the atomic nucleus and thereby learning on the effective nucleon-nucleon forces that
act at the very short length scale of nucleon separation.

b. Nuclear reactions in which one, or more nucleons are transferred into a nucleus or
taken out of a nucleus: so-called transfer reactions. Those reactions have unambigously
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shown the organization of nucleons to move in shell-model orbitals in which nucleons
like to combine into pairs, much like electrons do in the superconducting state in solid-
state physics. This effect has been most clearly shown studying the mass dependence
of proton and/or neutron separation energies throughout the nuclear mass table as
well as from the energy spacing between the 0+ ground-state and the first excited 2+

state in even-even nuclei.

c. Using the disturbance created by a rapidly moving charged particle (or nucleus) when
passing the atomic nucleus. The nucleus becomes excited and the internal charge
and magnetic structure can be probed in fine detail. Such reactions showed, e.g.,
the quadrupole reduced transition probabilities for heavy nuclei. These data are a
direct measure of the coherence between individual nucleons moving inside the atomic
nucleus and present a most interesting variation with mass number A. So one notices
that the nucleus can sustain various collective modes, much like a charged drop can
vibrate in various modes, rotate,..

d. External probing can also be done using heavy nuclei that come to grazing with a target
nucleus to which a fragment may be transferred but also a lot of angular momentum.
In this way, the behavior of very regular bands could be formed up to high spin and
excitation energy. Data taken within the early experiments showed the existence of
superdeformed rotational motion in 152Dy as discoverd in 1986 by Twin and co-workers
[37]. The extensive use of state-of-the-art gamma-arrays in recent years has given rise
to detailed mapping of nuclear excited properties at very high rotation frequencies.

The essential point here is that ingenious experimentation using - for each time span,
of course - the best and most advanced accelerators, detection techniques and analyzing
methods, the nucleus has provided us with surprises and challenges.

All these experimental data, derived from the limited region of the nuclear mass table,
the region where a variety of observables could be measured, have led us to - let us call it - a
“canonical” picture of the atomic nucleus. These results emerged from investigations by a lot
of people, in trying to reach deep understanding of how protons and nucleons are organized
and make up atomic nuclei: Heisenberg [38], Wigner [39] who applied concepts of symmetries
to spin and spin-isopin degrees of freedom, Mayer [40], Haxel, Suess and Jensen [41] devising
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the independent particle shell-model, Bohr and Mottelson [42], explaining collective effects
in atomic nuclei as elementary modes, Elliott [43, 44], bridging the gap between the nuclear
shell-model and the collective structures using the SU(3) model,...

The picture showing up is one in which the n-n force generates an average field (Figure
7) in which, quite naturally for every such system, a well-ordered set of single-particle orbits
emerges. The residual effects, caused by the nucleon-nucleon correlations, have to be treated
subsequently (using more advanced shell-model methods, using the dynamics of the liquid-
drop model, using mean-field HF(B) approaches,..) and we show that various collective
modes of motion could originate.

A. Independent particle model

Our starting point is the use of a simplified central potential (harmonic oscillator, square-
well potential) and study the solution to the motion of a nucleon (proton,neutron) in such
a potential. The one-body Schrödinger equation

(
p̂2

2m
+ U(r))ϕ(~r, ~s) = εϕ(~r, ~s), (39)

leads to the standard solution of the type

ϕn,l,ml,ms(~r, ~s) = Rn,l(r)Y
ml
l (θ, ϕ)χms

1/2(s). (40)

It is interesting to express the single-particle solution in an angular momentum coupled
representation (changing from the (l,s) basis to the (l,s)j coupled basis) through the relation

ψ(n,l,1/2)j,m(~r, ~s) = Rn,l

∑

ml,ms

〈l,ml1/2ms | jm〉Y ml
l (θ, ϕ)χms

1/2(s), (41)

in which now l,s=1/2,j and m are the good quantum numbers to specify the single-
particle state. Using the harmonic oscillator potential, this leads to the energy eigenvalues
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(N+3/2)h̄ω, with N=2(n-1)+l. This energy spectrum with highly degenerate N major shells
does not at all correspond to the experimental observed single-particle energy spectra, ex-
cept for the stable configurations at 2,8 and 20. It was the addition of a strong spin-orbit

interaction term ζ(r)~l.~s as introduced by Mayer and Jensen [40, 41] that gave rise to a
splitting of the j= l ± 1/2 degeneracy, coming in line with the experimental observations

(see the illustration of the N=4 major shell, when also a term ξ~l2 is added to the potential
in Figure 8). See also [45], Sect.3.1.1 to 3.1.3 for a more technical outline and detailed
comparison with experimental single-particle spectra.

When discussing in the remaining part of the lectures the wave function in the (l,s)j
coupled basis, we shall specify the wave function as ψja,ma(i) with ja a shorthand notation
for all good quantum numbers needed to specify the single-particle state uniquely, i.e.,
ja ≡ na(la, 1/2)ja, and i is shorthand notation for the coordinates of the i-the particle, i.e.,
i ≡ ~ri, ~si.

In Figure 9, a general single-particle energy spectrum is shown for both the proton and
neutron states.

Exercise: Derive the energy splitting for both the spin-orbit and quadratic orbital
perturbations within the (l,s)j angular momentum coupled single-particle basis. Discuss the
effect of the sign of these perturbations and its deeper meaning.

B. Two-nucleon systems

1. Two-nucleon wave functions

If we consider the motion of two nucleons outside of a closed shell configuration (which
corresponds to completely filled major oscillator shells, such as, e.g., 18O), containing two
neutrons outside of the closed 16O core, the description of the wave function will result from
angular momentum coupling of two identical nucleons (neutrons in the present example),
moving in orbitals j1 and j2. This results in a two-nucleon wave function

Ψj1j2,JM(1, 2) =
∑

m1,m2

〈j1m1, j2m2 | JM〉ψj1m1
(1)ψj2m2

(2). (42)

The energy of a core nucleus with two identical nucleons moving outside the core is the
described by the Hamiltonian

Ĥ = Ĥ0 + V (1, 2) ≡ ĥ0(1) + ĥ0(2) + V (1, 2), (43)

in which the independent particle motion of the nucleons, moving separately in the field of

the core, is described by the corresponding single-particle Hamiltonian ĥ0 = p̂2

2m
+U(r). For

the remainder we shall use the harmonic oscillator potential U(r) = mω2r2

2
, unless specified

explicitely (square-well,Woods-Saxon,.. potential). The residual interaction describing the
nucleon-nucleon mutual energy contribution is described by the form V(1,2) (see Sec. II).

The “unperturbed” energy for the two-nucleon configuration (which is the energy when
the residual interaction is turned off) becomes

Ĥ0Ψj1j2,JM(1, 2) = (εj1 + εj2)Ψj1j2,JM(1, 2), (44)
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FIG. 9: Single-particle spectra for protons and neutrons

whereas the total energy in the two-nucleon configuration (using the Dirac bra-ket notation
corresponding to the complex conjugate wave function and the wave function 〈j1j2 | and
| j1j2〉, respectively) reads

〈j1j2, JM | Ĥ | j1j2, JM〉 = (εj1 + εj2) + ∆E(j1j2, J), (45)

with ∆E(j1j2, J) the energy correction, lifting the degeneracy of the unperturbed J-states
(with | j1 − j2 |≤ J ≤ j1 + j2) given by the two-body matrix element (tbme) 〈j1j2, JM |
V (1, 2) | j1j2, JM〉.

From Lecture I, we have obtained a good idea on how the two-body nucleon-nucleon inter-
action looks like. Consequently the two-nucleon energy spectrum will depend on this choice
and on the specific J value to which the two-nucleon configuration is coupled. Considering at
present those situations (with two protons (neutrons) outside of a closed shell or two protons
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(neutrons) missing from a closed shell (which we call “two-hole” configurations and for which
angular momentum coupling holds precisely as for the particle configurations), there is one
more important restriction we have to take care of in the construction of the two-nucleon
wave function. Because of the indistinguishable nature of identically charged nucleons, we
need to impose the condition that the two-nucleon wave function is antisymmetric (a.s.)
under the exchange of the coordinates of nucleon “1” and nucleon “2”.

This implies the wave function to be written as

Ψas(j1j2, JM) =
∑

m1,m2

〈j1m1, j2m2 | JM〉[ψj1m1
(1)ψj2m2

(2) − ψj1m1
(2)ψj2m2

(1)]. (46)

Making use of the properties of Clebsch-Gordan coefficients, it is possible to rewrite
the above wave function in a form in which the angular momentum of the nucleon with
coordinate “1” is coupled to the angular momentum of the nucleon with coordinate “2”.
Consequently, the wave function becomes

Ψas(j1j2, JM) =
1√
2
[Ψ1,2(j1j2, JM) − (−1)j1+j2−JΨ1,2(j2j1, JM)]. (47)

Exercise: Derive this expression using angular momentum recoupling of two independent
nucleon angular momenta, as given in Equation (46), in their order of coupling (in the
order, 1 with 2 for the two terms).

We call this order 1,2; 1,2,3; 1,2,3,.... the “standard order” for angular momentum
coupling which is important to keep track of calculations in a correct way.

In the particular situation that the angular momenta of the two nucleons are identical
(and also all other quantum numbers), i.e., j1 = j2 = j, the two-nucleon antisymmetrized
wave function becomes

Ψas(j
2, JM) =

1√
2
Ψ(j2, JM)[1 − (−1)2j−J ], (48)

which is non-vanishing for even J values only. As an example, two nucleons moving in the
1d5/2 configuration give rise to the (1d2

5/2)J=0,2 and 4 states whereas the J=1,3,5 states are
forbidden by the Pauli principle. For general j value, the result becomes J=0,2,4,...,2j-1. In
case j1 6= j2, the values of J are bound to the interval | j1 − j2 |≤ J ≤ j1 + j2 and as an
example we consider (1d5/21d3/2)J, with J=1,2,3 and 4.

2. Two-nucleon correlations: studying the two-body matrix elements

As discussed before, it is the energy correction

∆E(j1j2, J) =as 〈j1j2, JM | V (1, 2) | j1j2, JM〉as(j1 6= j2), (49)

which determines the enery spectrum characteristic for a given nucleon-nucleon interaction.
Making use of the explicit form of the antisymmetrized two-nucleon wave function, the two-
body matrix element (tbme) separates into two terms which are called the “direct” and the
“exchange” terms giving the result

∆E(j1j2, J) = 〈j1j2, JM | V (1, 2) | j1j2, JM〉 − (−1)j1+J2−J〈j1j2, JM | V (1, 2) | j2j1, JM〉,
(50)
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and becomes in shorthand notation D(j1j2, j1j2; JM) − (−1)j1+J2−JE(j1j2, j2j1; JM).
In order to derive the generic properties for the two-nucleon energy spectrum we make

use of the specific short-range radial two-nucleon force behavior as described in Section II
Starting from the central character of the radial part of the two-nucleon forces, depicted

in the form V (| ~r1 − ~r2 |), making use of standard angular momentum properties (see [45],
Chapters 1 and 2), it is possible to expand the two-nucleon interaction into its multipoles,
described by the Legendre polynomials Pk(cos θ12), given the resulting form

V (| ~r1 − ~r2 |) =

∞∑

k

vk(r1, r2)Pk(cos θ12), (51)

The aim is to express the two-nucleon interaction in a form which is the sum of the
multipole terms, which can each be separated into the angular coordinates of the inter-
acting nucleons (θ1, φ1,θ2, φ2), times a radial structure function vk(r1, r2). This important
expression reads

V (| ~r1 − ~r2 |) =
∞∑

k

vk(r1, r2)
4π

2k + 1
Yk(r̂1) • Yk(r̂2). (52)

This form allows, using tensor reduction rules (see [45], Chapter 2 and Sect.3.2.3 for
technical details), the matrix element to be written as a sum (over all multipoles), which is
in shorthand notation

∆E(j1j2, J) =
∑

k

fkF
k − (−1)j1+j2−J

∑

k

gkG
k, (53)

with F k, Gk radial integrals (containing the harmonic oscillator wave functions and the radial
structure function characterizing a specific two-nucleon interaction) and fk, gk, functions that
are only dependent on the angular momenta j1, j2, k, J (Wigner 6j- symbol,...). In principle,
the sum over multipoles extends up to infinity. However, the functions fk, gk restrict the
sums over k into a finite set of contributions. The expression ( 53) reduces in the case
j1 = j2 = j to the simpler form

∆E(j2, J) =
∑

k

fkF
k. (54)

At this point, one should do a numerical calculation of these sums. However, the partic-
ular choice of the short-range character of the two-nucleon interaction as a zero-range delta
function form, i.e., δ(~r1 − ~r2), in which case the radial structure function becomes

vk(r1, r2) =
δ(r1 − r2)

r1r2

2k + 1

4π
, (55)

simplifies the above sums considerably. First of all, the radial (Slater) integrals become
equal with the result

F k = Gk =
2k + 1

4π

∫
[Rn1,l1(r)Rn2,l2(r)r]

2dr = (2k + 1).F 0, (56)

Next, the sum

∆E(j1j2, J) =
∑

k

(2k + 1)F 0(fk − (−1)j1+j2−Jgk), (57)
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FIG. 10: The k=0,2,...,10 multipole contributions for a two-nucleon system with the nucleons
moving in the 1h11/2 single-particle orbital. At the extreme right, the full energy spectrum is
shown, exhibiting a clear separation of the J=0 paired nucleon configuration, with respect to the
J 6= 0 values of the nuclear spin.

can be carried out in closed form, giving rise to the very important and general form of the
two-body matrix element

∆E(j1j2, J) = F 0(2j1 + 1)(2j2 + 1)〈j11/2, j2 − 1/2 | J0〉2 1

2(2J + 1)
(1 + (−1)l1+l2+J). (58)

The corresponding matrix element for j1 = j2 = j then becomes

∆E(j2, J) = F 0 (2j + 1)2

2(2J + 1)
〈j1/2, j − 1/2 | J0〉2. (59)

In the situation that j1 6= j2, the matrix elements vanish in those cases in which l1 + l2+J
is an odd integer. This result is relaxed for forces other than the zero-range delta interaction
but still much smaller than the ones with even integer values for l1 + l2 + J .

In figure 10, we show at the extreme right-side the two-nucleon energy spectrum for two
identical particles moving in a single-particle orbital characterized by j=11/2. This energy
spectrum holds as well for a | 1h2

11/2, JM〉 configuration as for a | 1i211/2, JM〉 configuration
because the energy expression derived before only exhibits a J-dependence.

Exercise: Is it indeed so that their is no dependence of the matrix elements in expressions
( 53) and ( 54) on the radial and orbital quantum numbers?

In this same figure, we show the various multipole contributions in the situation for the
1h11/2 orbital where the k=0 component gives a shift, independent of J, the k=2 quadrupole
component, which is leading to a dependence which appears quadratic in J(J+1), up to the
k=10 multipole. What shows up is that for the J=0 configuration, all multipoles contribute
in coherent way, whereas for the other J-values there is no such regularity.
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FIG. 11: Energy spectra for 18O (left hand part) and 128Po (right-hand part), respectively. The
theoretical spectra in each case, labeled as (a) correspond to the two nucleons moving in the neutron
2d5/2 and proton 1h9/2 orbital, respectively. The energy spectra labeled as (b) will be discussed in
the next section.

It turns out that the major outcome from the above study is the fact that when nucleons
are moving outside of closed shells, they tend to form J=0 angular momentum coupled pairs,
a characteristic which is also called the “pairing” effect. It is this correlation which makes
the nuclear shell model a tractable one, since for a heavy nucleus, essentially all nucleons are
paired-off to J=0 and only a few “valence” nucleons will determine the low-energy nuclear
structure properties. We shall discuss this issue later (Lecture III) in more detail and even
present an exactly solvable model.

There is an interesting point to be made here with respect to the strength, given by
F 0. This implies that there is not a single force “strength” parameter, because the radial
integral still exhibits a dependence on the quantum numbers n,l of the orbitals in which
the interacting nucleons are moving. We call this a “state” dependence. If however, one
uses a specific form of a zero-range interaction, i.e., considering a force which has the form
δ(~r1−~r2).δ(r1−R0), with R0 the nuclear radius, the Slater integral for two-nucleons moving
in orbitals characterized by the quantum numbers (n1, l1, n2l2) becomes

F 0 =
1

4π
[Rn1,l1(R0)

2Rn2,l2(R0)
2](R2

0). (60)

Inspecting the radial wave functions (see Figure 3.8 in [45]), it becomes clear that
precisely at the point r=R0 (at the nuclear radius), the value of the radial wave functions
(absolute values) is almost independent of the radial (n) and orbital (l) quantum numbers.
This force is also called a Surface Delta Interaction (SDI) (see ref. [1] for more details and
examples). In this case, there is an overall interaction strength that describes the two-nucleon
energy spectrum.

In the next subsection, we shall give a short discussion on application of these results in
various enery spectra.
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FIG. 12: Energy spectra of the N=50 isotones from Zr(Z=40) up to Cd(Z=48) concentrating on
the two-neutron configuration (1g9/2)

−n in which n describes the numbers of “holes” in this orbital,
counting from the Z=50 closed shell. The energy spectra are drawn relative to the highest spin
state 8+.

3. Applications

The method discussed before can in principle be applied to all even-even nuclei having
proton and neutron number corresponding to those cases in which we have a core Zc, Nc

(with Zc, Nc=2,8,20,28,40,50,82,126) and two extra proton or neutron particles (or holes)
outside of this core. We have to identify the single-particle orbital that is the dominant one
(normally the single-particle orbital that describes the ground-state spin in the corresponding
Zc, Nc ± 1 or Zc ± 1, Nc nuclei) in order to derive the corresponding energy spectra.

We show an example for 18O and 210Po, nuclei that are described at the 16O core plus
two neutron particles and the 126Pb core plus two protons, respectively (see Figure 11).

Exercise: Using the nuclear data basis of atomic nuclei, compare other situations and
evaluate how well the method of considering two nucleons interacting in just a single
two-nucleon configuration | j2, JM〉 is applicable. Also consider, e.g. the even-even Ca
nuclei, with Z=20 and N=22,24 and 26 and discuss the corresponding energy spectra.

A beautiful example of the experimental observation of specific two-nucleon correlations,
even going beyond the discussion given here is realized in the N=50 isotones considering the
Z=42,...48 nuclei (see Figure 12).
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C. Configuration mixing and the nuclear eigenvalue problem

It becomes clear that inspecting Figure 11 and comparing the experimental spectrum of
18O with the calculation considering the neutron 2d5/2 orbital as the most important one, the
agreement is not good at all. This implies that we cannot restrict the two neutrons to move
only in that orbital but we should consider all possible single-neutron orbitals available
beyond the 16O core. Inspecting the energy spectra, we can safely restrict ourselves to
the N=2 h.o. shell model orbitals i.e., also consider the 2s1/2 and 1d3/2 neutron orbitals.
This also implies that in general the correct wave function describing the lowest J=0,2
and 4 spin states should be linear combinations of the basis states. Instead of writing the
most general form of the nuclear eigenvalue equation, we shall concentrate to the Jπ=0+

states. In this case, we have to consider 3 basis configuration, i.e., | ψ0
1〉 =| (1d5/2)

2; 0+〉,
| ψ0

2〉 =| (2s1/2)
2; 0+〉, and | ψ0

3〉 =| (1d3/2)
2; 0+〉, respectively.

These basis states are eigenstates of the zero order Hamiltonian Ĥ0 ≡ ĥ0(1) + ĥ0(2), but
not of the full Hamiltonian, also containing the two-nucleon residual interaction. It becomes
clear that the full wave function can be expanded in the above basis as

| ψp〉 =
∑

k=1,2,3

akp | ψ0
k〉, (61)

with p=1,2,3, describing the three orthogonal linear combinations of the three basis states.
This immediately leads to the secular equation, demanding that the state | ψp〉 is an eigen-

state of the full Hamiltonian Ĥ = Ĥ0 + V (1, 2), i.e.,

Ĥ | ψp〉 = Ep | ψp〉, (62)

or,
∑

k

[Hlk −Epδlk]akp = 0. (63)

Exercise: Carry out the algebra to derive the secular equation ( 63), starting from the
eigenvalue equation ( 62).

The matrix (in this case a 3x3 matrix) Hlk contains the unperturbed energy of the
configurations as well as the corresponding two-nucleon matrix elements, i.e.,

Hlk = E0
kδlk + 〈ψ0

l | V (1, 2) | ψ0
k〉, (64)

where the “diagonal” energy terms correspond to the unperturbed energies of the three
possible cases (in the situation of the 0+ states these become E0

1 = 2ε1d5/2
, E0

2 = 2ε2s1/2
and

E0
3 = 2ε1d3/2

, respectively), and the interaction matrix elements Vlk ≡ 〈ψ0
l | V (1, 2) | ψ0

k〉 are
given by

V11 = 〈(1d5/2)
2, 0+ | V (1, 2) | (1d5/2)

2, 0+〉, (65)

with V22, V33 similar expressions for the diagonal terms.
For the non-diagonal terms, we obtain the expressions

V12 = 〈(1d5/2)
2, 0+ | V (1, 2) | (2s1/2)

2, 0+〉, (66)

and similar expression for all the other non-diagonal terms. Remind that the energy matrix
H is a real symmetric matrix.

Starting from the secular equation (63), which can be rewritten as
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∑

k

Hlkakp = Epalp, (67)

and making use of the orthogonality expression for the eigenstates 〈ψp | ψp′〉 = δpp′, one
obtains the energy eigenvalue equation

∑

l,k

alp′Hlkakp = Epδpp′, (68)

or, in shorthand notation

ÃHA = Ep1. (69)

This leads for 18O to the diagonalization of a 3x3 matrix for the 0+ states. It is easy
to construct the energy matrices for all other possible spin states if the two neutrons are
allowed to be partioned over the three neutron single-particle orbitals.

Exercise: Construct the energy matrices for the 2+ and 4+ states.

For the particular case of just two nucleons outside a closed core, the energy matrices
to be diagonalized Ĥ have a small dimension because there is only a limited amount of
basis configurations that determine the dimension of the model space. There exist different
algorithms for matrix diagonalization such as the Jacobi method which is used for dimension
d ≤ 50 (see, e.g. Wikipedia for an outline of the method which is straightforward and can
easily be implemented at http://en.wikipedia.org/wiki/Jacobi eigenvalue algorithm). The
Householder method is used for dimensions typically of the order 50 ≤ d ≤ 200, and the
Lanczos method for d ≤ 200 up to very big dimension (see [1]). These latter two methods
will be mainly used in nuclei with many protons and neutrons interacting outside of a closed
core as presented in [46].

Before moving on to Lecture III, we come back to the example of 18O, in which, study-
ing the 0+ states, the 3x3 energy matrix is such that the third basis state appears at a
considerably higher unperturbed energy (the energy of the diagonal element H33 with the
interaction energy “switched off”). Consequently, we may, to a first approximation, study
the 2x2 submatrix which gives rise to a quadratic equation in the energy eigenvalue E.
Defining V ≡ H12 = H21, the quadratic equation reads

(H11 −E)(H22 − E) − V 2 = 0. (70)

The roots become

E± =
H11 +H22

2
± 1

2

√
(H22 −H11)2 + 4V 2, (71)

and indicate that the energy difference between the two energy eigenvalues becomes
∆E =

√
(∆H)2 + 4V 2. This difference becomes minimal 2 | V | if the unperturbed

energies of the two states that mix are equal, i.e., for ∆H =0, and asymptotically, for
| H22 −H11 |≫| V |, ∆E → ∆H .

Exercise: Show that in a 2-level model, with H11 = E0
1 + χa and H22 = E0

2 − χb, with
a,b > 0, the energies E− and E+ approach as a function of the variable χ, with a minimal
separation at the point where H11 = H22. Also show that the energy eigenvalues illustrate a
“no-crossing” rule. Moreover, show that the eigenvectors at the point of closest approach of
the two eigenvalues are equal mixtures of the basis states | ψ0

1〉 and | ψ0
2〉 but that the lowest

(highest) eigenvalue corresponds to the symmetric (antisymmetric)combination of the basis
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states for an attractive interaction, i.e., V = - | V |.

IV. MANY-NUCLEON CORRELATIONS: INTERPLAY OF SHELL-MODEL

AND COLLECTIVE EXCITATIONS

In the former Section IIIB, starting from the single-particle nuclear wave functions, we
discussed in detail how to construct the two-nucleon wave functions for identical nucleons
(protons or neutrons) and studied the way in which the remaining two-nucleon interaction is
splitting the original degeneracy of the independent-particle model (IPM). We constructed
the two-nucleon eigenvalue equation and could already, for a limited number of nuclei, com-
pare the theoretical outcome with the observed energy spectra.

In the present section, we extend the above method so as to allow us to discuss sys-
tems with many valence nucleons moving outside closed shells, containing both protons
and neutrons. In order to do so, we should understand how to (i) construct a basis for the
many-nucleon configurations and, (ii) how to describe the nucleon-nucleon interaction V(1,2)
that is effective inside the nuclear medium, in contrast to the nucleon-nucleon interaction
describing nucleon-nucleon scattering in “free” space (see Sect. II).

A. Construction of a multi-nucleon basis

1. Angular-momentum coupled basis

Having constructed, starting from the one-nucleon wave functions ψj1m1
the antisym-

metrized and normalized two-nucleon wave functions Ψas(j1j2, JM), there is a straight-
foward method using angular momentum techniques to construct 3,4 and higher number
of nucleon wave functions corresponding to a given angular momentum J (and magnetic
quantum number M). This method becomes quite involved once going beyond 3 nucleons
and will not be discussed in its technical details. The process is inductive in the sense that
a fully antisymmetric 3-nucleon wave function is described as a sum of products of wave
functions that are antisymmetrized in the coordinates of two nucleons only. This reads

Ψ(j3α, JM) =
∑

J1

[j2(J1)j |}j3αJ ]Ψ(j2(J1)j, JM), (72)

where the sum J1 goes over all the allowed even-even values and α is an extra quantum
number needed to specify a three-nucleon state with angular momentum J uniquely (it can
be such that from three nucleons, and more, there are independent ways to couple the
individual angular momenta to the total spin J).

This method can be extended from 2 → 3, 3 → 4, ..., (n − 1) → n in order to construct
the fully antisymmetrized wave functions Ψ(jnα, JM) resulting as

Ψ(jnα, JM) =
∑

α1,J1

[jn−1(α1J1)j |}jnαJ ]Ψ(jn−1(α1J1)j, JM). (73)

The expansion coefficient [... |}...], are called coeffients of fractional parentage (cfp) be-
cause they express how the fully antisymmetrized (notation a.s.) n-nucleon wave function
orginates from each of the fully a.s. (n-1)-nucleon wave functions. More technical details
are discussed in [45] (Sect. 3.3).

If we extend the system to describe situations in which protons and neutrons are present,
such as 18F with a single proton and neutron moving outside of the 16O closed core, we
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can use the above methods but since protons and neutrons are distinguishable nucleons, the
Pauli exclusion principle no longer holds thus the restriction to construct antisymmetrized
wave function ceases. It can be interesting to handle the proton and neutron a.s. states
corresponding to the nucleon appearing in a “spin up” or “spin down” configuration in
an abstract space called isospin-space. This means adding an extra quantum number to
specify the nucleonic configuration as being in a neutron state | t = 1/2, tz = +1/2〉 or in a
proton state | t = 1/2, tz = −1/2〉 (or, equivalently by the notation ζ tz

1/2(t) with tz = ±1/2,

respectively). Consequently the one-nucleon wave function describing a proton or neutron
state becomes

ψ(n,l,1/2,1/2)j,m,tz(~r, ~s,~t) = Rn,l

∑

ml,ms

〈l,ml1/2ms | jm〉Y ml
l (θ, ϕ)χms

1/2(s)ζ
tz
1/2(t). (74)

Using angular momentum methods, we can also couple individual nucleon isospin wave
functions to a given total isospin T, which in the case of a two-nucleon system results in
the eigenvectors | T = 1, Tz = +1〉, | T = 1, Tz = −1〉, | T = 1, Tz = 0〉, | T = 0, Tz = 0〉 for
the nn, pp and pn system (in the np system the proton and neutron state can combine in a
symmetric or antisymmetric state) (see [45] (Sect. 3.4) for a more detailed discussion).

The isospin quantum number represents a convenient way to construct many-nucleon
wave functions and is a very powerful approach in particular when the nuclear Hamiltonian
does not break the isospin symmetry (meaning that all NN interactions should be charge
independent, which is of course not the case for the electromagnetic interaction affecting
the interaction between protons only). However, it is equally well possible to label the wave
functions in the way discussed before and label the state as representing it as a proton or
neutron state (writing quantum numbers as {np, lp, jp, mp} for a proton and similar replacing
the index p by n, describing a neutron state.

2. m-scheme basis

An efficient way to construct a basis circumventing the involved angular momentum
methods as described before starts by identifying the information needed to characterize the
nuclear wave function describing the A nucleons constituting the atomic nucleus.

Starting from a shorthand notation to identify a single-particle wave function {αi} ≡
{ni, li, ji, mi} as ψαi

(~ri) and imposing the condition to construct a wave funtion antisym-
metric in the interchange of the coordinates of any pair of nucleons, one obtains the following
determinant-type wave function

Ψα(1, 2, ...A) ≡ Ψα1,α2,..,αA
(1, 2, ...A) =

1√
A!

∑

P

(−1)P
i=A∏

i=1

ψαi
(~ri), (75)

in which the αi characterize the quantum numbers of the A occupied states in the atomic
nucleus and the sum extends over all possible permutations of the quantum labels, with P
even or odd according to the type of permutation. This wave function is antisymmetric by
construction as follows from the properties of determinants implying a multiplication by (-1)
for the interchange of any two columns (or rows) in the determinant. Thus, the essential
information is given by the set of quantum numbers labeling the occupied orbitals. One can
show that there exists a one-to-one corresponding between the wave functions in expression
(75) and occupation number states, defined as

| α1, α2, ..., αA〉 ≡ a†αA
...a†α2

a†α1
|〉, (76)
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in which | αi〉 = a†αi
|〉, denotes the creation of a nucleon in an orbital described by the

quantum numbers αi acting on the vacuum state |〉 with no particles present. This for-
malism is also called the occupation number representation, and is fully equivalent to the
wave function representation (including the antisymmetric character) if the operators full-
fil the anticommutation relations {a†αi

, a†αj
} =0, likewise for the corresponding annihilation

operators {aαi
, aαj

} =0 as well as the relation {a†αi
, aαj

} = δαi,αj
.

Because of the fact that this representation is the most economic way of giving information
about the occupied orbitals describing a given basis state, moreover incorporating the Pauli
principle, this scheme lends itself to numerical studies. We should mention that the wave
function described by expression (75) does not have a good total angular momentum J and

posseses only a given projection M, i.e., M =
∑i=A

i=1 mαi
as a good quantum number.

The many-nucleon wave functions thus obtained are eigenfunctions of the energy eigen-
value equation, if we switch of the two-nucleon interaction, and is described by the indepen-

dent particle Hamiltonian Ĥ0 =
∑i=A

i=1 ĥ
0(i)

Ĥ0Ψα(1, 2, ...A) = E0
αΨα(1, 2, ...A), (77)

with E0
α =

∑i=A
i=1 εαi

, being the sum of the A single-particle energies.
In practice, one of course has to carry out projection on good angular momentum

quantum number J (and if also using the individual isospin labels to characterize the
single-particle states, projection on good isospin T).

Exercise: Consider a system of three identical nucleons (protons in our case) that occupy
the 1f5/2 single-particle orbital. The state with the maximum value in this case is M=+9/2
(and also M=-9/2). Construct all possible partitions of the three nucleons over the possible
m substates and find out what the possible J values are in the present example

Using the m-scheme, one can quickly evaluate the dimension of the full configuration
space if one has a given number of protons nπ and neutrons nν distributed over Nπ proton,
respectively Nν neutron, orbitals. The value of Nπ is given by the sum over all magnetic
substates and over all single-particle jπ orbitals, i.e.,

∑
jπ

(2jπ +1), which is called the model
space degeneracy. The result is given by the combination of n nucleons of N orbitals in all
possible ways, expressed by the binomial coefficient product CNπ

nπ
.CNν

nν
.

We illustrate the situation in which protons and neutrons are filling the full fp shell (the
orbitals situated between N=Z=20 and N=Z=40), in which the degeneracy for protons and
neutrons is 20 in each case. It is obvious that the maximal dimension (encompassing all
possible M-states) will be maximal at Z=30,N=30 with is the nucleus 60Zn (see Figure 13).

B. Solving the nuclear many-body eigenvalue problem

Having discussed the methods to construct basis states of n valence nucleons moving
in a set of single-particle states either in an angular momentum coupled basis J(T), or,
using the m-scheme basis, one can construct the corresponding energy eigenvalue equation
(or, equivalently, construct the energy matrix Hl,k). This has already been worked out in
Section III studying two nucleon systems as a worked-out example. In the more general case,
for a given (Z,N), one first separtes the A nucleons into the ones constituting the ”core”
(defined by Zc,Nc) and the valence nucleons which form the model space (with nπ valence
protons and nν valence neutrons).

Using angular momentum coupling, one has to consider all possible partitions of the
valence nucleons (for both nπ and nν) over the available proton single-particle orbitals
j1,π, j2,π, .., jk,π and likewise for the neutrons, i.e., j1,ν , j2,ν , .., jl,ν. This can become rather
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FIG. 13: Complete M-scheme dimension as well as the dimension considering only the M=0 sub-
states for the (fp) shell model space, spanning the mass region starting at 40Ca and ending at
80Zr.

cumbersome because of the angular momentum coupling at the various stages, e.g. for the
proton situation, the basis state becomes

| απ, JπMπ〉 =| [...[(j1)
nπ

1

α1,J1
(j2)

nπ
2

α2,J2
]J12...(jk)

nπ
k

αk ,Jk
; JπMπ〉, (78)

with nπ =
∑k

i=1 n
π
i and similar for the neutron partitioning constructing the neutron basis

state | αν , JνMν〉.
Finally, the full proton-neutron coupled configuration space is spanned by the coupled

states | α, JM〉0 ≡| απJπανJν , JM〉 in which the proton and neutron states are coupled to
total spin J. The wave functions for given J, and rank number i | i, JM〉 =

∑
α c

i
α | α, JM〉0

(here, α is a shorthand notation that labels the basis states uniquely which means that al
partitions of valence protons and neutrons over the proton and neutron single-particle states,
as described before, are summed over) is the solution of the equation Ĥ | i, JM〉 = E(i, J) |
i, JM〉.

This is equivalent to solving the energy eigenvalue equation

∑

k

[HJ
lk −E(i, J)δlk]a

(J)
ki = 0. (79)

We illustrate the increasing model space for 28Si, containing 6 valence protons and neu-
trons outside of the 16O core nucleus, starting from the | 1d6

5/2, 0〉 filled proton and neutron

configuration (see Figure 14).
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FIG. 14: Model space for, the nucleus 28Si, in which 6 protons and 6 neutrons are partitioned in
all possible ways over the full sd model space, starting from a configuration with 6 protons and 6
neutrons filling the 1d5/2 single-particle orbital.

C. Effective nucleon-nucleon interactions

The big question now is: what about the nn interaction to be used in constructing the
energy matrix. Having discussed about nuclear forces and how we can learn on its basic
properties, it looks natural to start from the bare nucleon-nucleon interaction. This, however,
poses serious problems because what we need here is the nuclear force acting in the nuclear
medium, even restriced to a particular small subspace of the much larger space of all possible
configurations.

1. Microscopic effective interactions

The most fundamental way to obtain the nn interaction acting inside the atomic nucleus
is to start from the nn interaction as discusssed in Section II, by taking into account the
fact that the interacting nucleons are now part of a complex A nucleon system (medium
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effects, involving the Pauli principle) and the fact that in describing a given nucleus or a
given limited model region, one is using a restricted part of the full configuration space.
This so-constructed interaction is named an ”effective interaction”. Here we shall outline
only the main steps and for technical details refer to [47–52].

ĤΨ = (Ĥ0 + V̂ )Ψ = EΨ, (80)

where Ĥ0 is the unperturbed Hamiltonian as described before in Section III. The true wave
function Ψ can be expanded in the basis of the solutions to Ĥ0 as

Ψ =

∞∑

k=1

akΦk, (81)

however, in solving for many-body system in practice, only a limited number of configura-
tions is possible, leading to a truncated model space (presence of other nucleons when going
from free nucleon-nucleon scattering to in-medium scattering,...) which is called the model
space (M). This results in the model wave function

ΨM =
∑

k∈M

akΦk. (82)

We should impose, to derive a good truncation scheme , that the lowest M eigenvalues
in the complete space be produced exactly in the model space. This implies the definition
of an effective interaction V̂eff in the model space defined by imposing the equality

ĤeffΨ
M ≡ (Ĥ0 + V̂eff)Ψ

M = EΨM . (83)

We now define the projection operator P̂ , with

P̂ =
∑

k∈M

| Φk〉〈Φk |, (84)

projecting on the model space and the complementary operator Q̂ projecting off the model
space (thus P̂ + Q̂ = 1, P̂ Q̂ = 0, Q̂P̂ = 0, P̂ 2 = P̂ and Q̂2 = Q̂). These projection operators

also have the property that [P̂ , Ĥ0]=[Q̂, Ĥ0]=0.

Starting from the equations P̂ (Ĥ − E)Ψ = 0 and Q̂(Ĥ − E)Ψ = 0, one can express the

effective interaction V̂eff as an infinite series, written as

V̂eff = V̂ + V̂
Q̂

E − Ĥ0
V̂eff . (85)

A first step in moving from the bare nucleon-nucleon interaction towards a nucleon-
nucleon in medium interaction is one in which all possible final scattering states of the two
nucleons inside the nucleus are projected out and can scatter to unoccupied states (unbound

states, bound but unoccupied) through acting with the operator Q̂2p. This corresponds to
sum an infinite class of diagrams, called ladder diagrams, resulting in the Bruecker G-matrix
(the in-medium equivalent of the bare nn interaction)

Ĝ(ω) = V̂ + V̂
Q̂2p

ω − Ĥ0
2p

Ĝω. (86)
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FIG. 15: Schematic figure indicating the step to renormalize the bare nucleon-nucleon interaction
(acting in free space) when considering two nucleons interacting inside the atomic nucleus, with all
orbitals occupied up to the Fermi level. The Pauli principe only allows scattering to unbound and
unfilled bound states.

This G matrix corresponds to an ineraction which is considerably ”softer” as compared
with the repulsive short-range behaviour of the bare nucleon-nucleon interaction. This pro-
cess is illustrated in a schematic way in Figure 15.

The effective interaction, acting now in a reduced model space, e.g., describing the nuclei
in the sd shell, can, using the above procedure be constructed this time starting from the
so-constructed G-matrix with as a result

V̂eff = Ĝ + Ĝ
Q̂′

EV − Ĥ0
V

V̂eff . (87)

where EV is the energy corresponding with the Hamiltonian Ĥ0
V for the valence nucleons

(defining the model space outside of a closed core) and EV describing the full energy for

the valence space and the projection operator Q̂′ is defined such that the ladder diagrams
implied by the projection operator Q̂2p are excluded this time.
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This full program has been carried out by T.T.S. Kuo and G.E.Brown [53, 54], starting
from the bare Hamada-Johnston potential with application first for nuclei near to 16O,
and the 1f-2p shells (also called the KB interaction) showing that the effective in-medium
effective interaction, starting from the G-matrix and the subsequent very important core-
polarization effects, generates a set of two-body matrix elements which describe properties in
light nuclei. Similar studies have been carried out for the sd and fp shell, this time starting
from meson-theoretical Bonn potentials by M.Hjorth-Jensen et al. [55]. These so-called
microscopic effective interactions have been much explored during the last 25-30 years in
light up to medium-heavy nuclei.

A major drawback with this approach is the fact that the so constructed microscopic
effective forces do not lead to the correct binding energies when considering a long series of
isotopes (isotones) in which the number of valence neutrons and/or protons outside of a core
nucleus starts increasing. A striking example is the case for the Ca region inspecting the
energy gap ∆ between the 1f7/2 and 2p3/2 orbitals moving from 41Ca to 49Ca [56] filling up
the 1f7/2 orbital with 8 neutrons. The starting value ∆ changes from 1.8 MeV to 2.06 only
using the KB interaction as compared to the experimental value of 4.81 MeV, a most striking
discrepancy. This so-called ”monopole” problem has been recognized early on and cured by
Pasquini, Poves and Zuker [57, 58] in an empirical way such that the theoretical variation
in the single-particle energies fits with the data [59]. This topic on itself would deserve a
more detailed discussion to appreciate (i) the problem related to incorrect saturation moving
to increasingly heavier nuclei using microscopic effective interactions, (ii) the empirical way
to cure this by adjusting mainly the monopole part of the microscopic effective interaction,
and, most importantly, (iii) the recognition of the need to incorporate three-body forces in
progressing to a consistent description of in medium nuclear forces and the ensuing nuclear
structure properties [60]. We also refer to [46] for a discussion on this issue.

2. Phenomenological effective interactions

Opposite to the microscopic approach, the philosophy arose to consider the single-particle
energies and the two-body matrix elements as parameters to be fitted to experimental en-
ergies through use of the eigenvalue equation in a given restricted model space.

It so appears that the energy matrix elements Hlk (see also the discussion in Section III)
can be expressed as functions of the most basic elements, i.e., the single-particle energies εj

and the two-body matrix elements 〈j1j2, JM | V | j3j4, JM〉 specific for the selected model
space. In the particular choice of the sd shell, this implies 3 single-particle energies and 63
two-body matrix elements with the protons and neutrons situated in between 16O and 40Ca.

Thus, starting from an initial guess of these ”parameters”, the energy matrix is con-
structed, diagonalized and its energy eigenvalues compared with the corresponding exper-
imental data covering a given model space. Then, a least-squares fitting minimizing the
quantity

∑Ndata

i=1 | Eth
i −Eexp

i |2 is carried out. The variation of parameters leads to a set of
linear equations resulting in a new set of parameters. The process is iterated until conver-
gence is obtained. More recently, these fits are performed on particularly important linear
combinations of matrix elements (for more details see [1]).

The early studies were carried out for the p shell nuclei with 15 tbme (4He – 16O) by
Cohen and Kurath [61]. The sd-region (63 tbme) (16O – 40Ca) was covered by various
interactions of the Utrecht group [1, 62, 63] and of Brown, Wildenthal and collaborators
[64–66]. Updated USD-A and USD-B interactions have recently been constructed, using an
extended data basis in the fitting process [67].

An effective interaction for the full pf -shell (with 195 tbme for the region (40Ca – 80Zr))
model space has been constructed by Honma et al., resulting in the GXPF1-interaction
and various adjusted and updated versions [68–70]. This interaction is actually based on a
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microscopic approach (G-matrix), and further fitted to the experimental data in the mass
range 47 ≤ A ≤ 66. It gives a good description of nuclei in the mass region A ≃ 50. For the
lower part of the pf -shell (A ≤ 52), we already pointed out that the microscopic effective
interaction derived by Kuo and Brown, called the KB force [54] shows serious deficiences.
Modifications to make it more like a phenomenological interaction have been derived, fitting
to various essential date, called the KB1 [57], KB3 (monopole modifications), [58] and
KB3G [71] (shell gap adjusted) interactions.

Even higher masses have been studied, going up to the 1f5/2p1g9/2 model space spanning
the region 56Ni – 100Sn [72].

Together with these studies, state-of-the-art computer codes have been developed in order
to carry out such large-scale shell-model calculations using the m-scheme basis (ANTOINE
[73], OXBASH [74], MSHELL [75], NUSHELL [76], the OSLO code [77], REDSTICK
[78], and refer to the code NATHAN [73] and DUPSM [79] for codes using the J(T) basis
(see also [46]).

3. Schematic effective interactions

Instead of parameterizing the two-body matrix elements, the option is to make a choice
of a more schematic analytic form along the lines as discussed in Section II. Some particular
choices of multipole forces, emphasizing the effects of a specific correlation have been made.
The low-multipole quadrupole-quadrupole force reads

VQQ = χ(

√
mω

h̄
rπ)2(

√
mω

h̄
rν)

2Y2(r̂π) • Y2(r̂ν). (88)

This force is mainly responsible for describing low-lying quadrupole collective motion (as
will be discussed in Sect. IVD 1).

Another often used schematic force is the zero-range interaction, which in a more general
form can be the radial part of a force that also contains effects related to the two nucleons
being in an S=1 (triplet) or S=0(singlet) state and reads

V (1, 2) = V0δ(~r1 − ~r2)(1 + α~σ1 • ~σ2). (89)

Here, there are just two parameters that characterize the interaction, i.e., V0 and α fixing
the strength and the spin exchange character, respectively. It is common then to determine
these parameters in order to reproduce the energy spectra of a few nuclei in restricted model
space.

It is also possible to start from even more general analytic expressions, such as a central,
a spin-orbit and tensor term (which are also the major terms used to describe the bare
nucleon-nucleon ineractions as described before), but this time the parameters specifying
the precise form of the interaction are fitted for a larger model space, along the method
described when discussing the phenonomenological effective interactions. Such calculations
have been performed by Cohen and Kurath [61] (p-shell) and by Richter et al. [80] (fp-shell).

An important interaction is the pairing interaction between identical nucleons (neutrons
or protons). In the simplest case, a constant strength is used independent of the single-
particle quantum numbers these identical nucleons are moving in. The force is defined such
that it gives non-vanishing matrix elements only for J = 0 coupled nucleon pairs (see also
Sect. IVD 2), and with matrix elements given by the expression

〈(ja)2, J = 0 | Vpairing | (jb)
2, J = 0〉 = −(−1)la+lb

G

2

√
(2ja + 1)(2jb + 1). (90)
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FIG. 16: Energy spectrum for the even-even nucleus 48Cr, comparing with the large-scale shell
model spanning the complete fp shell and with estimates for pure rotor and vibrational spectrum

D. Collective excitations in the nuclear shell model

1. Large-scale shell-model applications

The possibilities to test the internal consistency and robust characteristics of the nuclear
shell model and also test its predictive power have by now been extensively carried out
all through the nuclear mass region, except for those regions where the number of protons
and neutrons is becoming large and where the full model space leads to intractable large
dimensions of the model space (e.g., the deformed rare-earth nuclei in the Z=50-82,N=82-
126 mass region). There are by now a number of review papers covering extensively the
possibilities and also limitations [46, 81].

The nuclear shell model allows to describe properties of nuclei in the immediate vicinity
of closed shells rather well, containing a few valence nucleons, over specific series of isotones
(isotopes) even moving away from a closed proton and neutron shell, in particular covering
the middle of the sf and pf model spaces. It was known that, even rather near to doubly-
closed shell, clear-cut indications for collective (rotational bands) showed up in N=Z nuclei
such as 20Ne, 24Mg (sd-shell), 48Cr, (fp-shell) to give just a few examples.

In the following, we concentrate on the 48Cr nucleus (see Figure 16). A full model-space
can be handled considering the (fp)8 model space which leads to a full M-space dimension
of ∼ 107 basis states. Using a monopole-corrected KB interactions, Caurier et al. [82]
have shown that the shell model is generating highly coherent motion between the valence
protons and neutrons leading to a rotational behavior for spin up to J=10. Higher up,
some strange behavior results, indicating a major change in the underlying configurations
describing the band, however, quickly setting back once having passed a ”crossing” point
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FIG. 17: BE2 values in the even-even nucleus 48Cr ground-state band, comparing with the large-
scale shell model spanning the complete fp shell and with the results using a pure K=0 rotational
band

(called ”backbending”). The experimental observation can be described in a macroscopic
approach using concepts deriving from the nucleus being described as a charged, liquid drop
amenable to collective oscillations and rotations or the collective model put forward by Bohr,
Mottelson and Rainwater [84–86]. It is a very important result that the nuclear shell model,
containing a number of interacting protons and neutrons in a large model space, is able to
describe these phenomena as a result of the many individual nucleon-nucleon interactions,
inducing particular correlations.

Going one step deeper, one can also calculate the electromagnetic decay properties inside
this band (the E2 transitions) (see Figure 17). Using those theoretical numbers, and
analyzing them using the expressions of the collective model for a pure rotational band, it
is most interesting that the nuclear shell model (at least up to spin J=8,10) wave functions
are consistend with a single ”intrinsic” structure, expressed by the quadrupole moment.
Inspecting, however, the comparision between the data, the nuclear shell model and a purely
collective model approach, it is most interesing to see that the shell model is doing very well
overall. It was shown by Zuker et al. [83] that reducing the huge model space to just
the (1f7/22p3/2)

8 contains the essential physics and that using this model space, considering
a schematic quadrupole interaction, one is able to generate the appearance of rotational
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collective motion. This opens a deep view on how collective rotational modes of motion
and specific shell-model correlated configurations are connected. This connection was first
shown in seminal papers by Elliott [43, 44] emphasizing the underlying symmetries in
the shell-model wave functions for sd shell nuclei, characterized by the SU(3) dynamical
symmetry inherent in a degenerate harmonic oscillator shell model approach, even adding a
quadrupole-quadrupole residual interaction. The topic of symmetries could easily take up
another lecture.

The road we have taken starting with the IPM, consecutively adding more correlations,
has shown that collective effects can be generated in a natural way within the shell model,
even opening a road, using the underlying symmetries within the nuclear shell model basis,
to come into reach of describing highly correlated modes of nucleon motion.

2. Collective excitations: coherence and symmetries

In our study of the nuclear shell model, we include all possible correlations induced by
the effective in-medium interaction. This involves the low multipoles, implying long-range
correlations extending over the whole nuclear interior. The higher multipoles, on the other
hand, are mainly responsible for the almost isotropic scattering of nucleons from a given pair
of orbitals (j,m)(j,-m) into any other magnetic substate (j,m’)(j,-m’) and are at the origin
of the pairing gap between the Jπ = 0+ and the higher spin states. As a consequence of the
interplay between the low- and high multipoles present in the effective interactions, a large
diversity of energy spectra can very well be described and understood.

We have seen that large-scale shell-model (LSSM) calculations with a number of protons
and neutrons outside of closed shells can give rise to rotational bands. This is mainly the
result form the quadrupole force acting in the model space, coupling (lj,l+2,j+2) partners
particularly strong. On the other hand, we have shown that short-range forces (see Section
III) result in a large energy gap separating the 0+ and 2+ state when identical nucleons are
considered (see, e.g., the examples of 18O, 210Po (Figure 11) and the N=50 isotones (Figure
12)).

It is possible to define a specific interaction that is acting only in the Jπ = 0+ state
resulting from the (j)2

J configuration. This is obviously not possible using the zero-range
interaction because non-vanishing binding energies result for the J 6= 0 states, albeit with
quite small binding energies for the highest-spin states. The pairing force, only affecting the
Jπ = 0+ state, has to be constructed using the occupation number representation.

We define the operator S†
j acting on an empty shell (reference state called | 0〉) as

S†
j | 0〉 =| j2, J = 0M = 0〉 =

1√
Ω

∑

m>0

(−1)j+ma†jma
†
j−m | 0〉, (91)

The pairing interaction doing precisely what we intend is then defined as (see [45], Sect.
7.2 for technical details)

Ĥ = −GΩS†
jSj, (92)

and results in the energy spectrum with a binding energy of E(J = 0) = −GΩ and E(J 6=
0) = 0.

If we extend from the 2-particle case to a j-shell filled with n identical nucleons (n even),
it is energetically most favorable to put the nucleons in (n/2) pairs, resulting in the ”con-
densate”

(S†
j )

n/2 | 0〉, (93)
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It is now possible to break a pair with J=0 and form two nucleons coupled to angular
momentum J. We call this a broken pair state, defined as

B†
J =

∑

m

〈jmj −m | J0〉a†jma†j−m. (94)

This allows us to construct states with an increasing number of broken pairs, up to
reaching the mid-shell point Ω = j + 1/2, creating the set of states

(S†
j )

(n/2)−1B†
J | 0〉, .... (95)

This model is an exactly solvable model and carrying out the algebra of it results in the
energy spectrum for the (jn) configurations for identical nucleons given by the expression

E(v, n) = −G/4(n− v)(2Ωj − n− v + 2) (96)

in which the quantum number v (called ”seniority”) is defined as the number of nucleons
that are not coupled in Jπ = 0+ pairs.

Exercise: Construct the absolute and relative energy spectra for the configuration
(1h11/2)

n and compare your results with the results we showed in Figure 12 for the N=50
isotones. Also compare with the energy systematics for the even-even Sn (Z=50) nuclei.
You will notice that in the Sn nuclei, spanning the region N=50 – N=82, the neutron
single-particle energies are more realistic as compared to the schematic model, considering
a single j=31/2 shell but still, the basic properties of the schematic model are rather well
realized.

The above pairing model has most interesting properties since it can also be solved in an
algebraic way, making use of the fact that the operators S†

j , Sj and their commutator [Sj, S
†
j ]

are the generators of an SU(2) group (see A. Frank et al. [87] for a detailed discussion).
The pairing model, as applied here to a single-j shell, can be extended for a set of non-

degenerate many-j shells, but loses the simplicity of the above exact pairing model, however
keeping the essential physics. The Sn region (as is the N=82 and N=126 series of isotones)
forms a particularly interesting mass region to test these ideas.

V. CONCLUSION

We have discussed the intertwinning of our understanding on nuclear forces and the low-
lying nuclear structure properties. We started with on one side the rather crude descrip-
tion of the NN interaction, evolving into modern interactions describing nuclear scattering
properties in great detail. On the other side, we have discussed important developments
in the nuclear shell model, starting from an independent particle picture (IPM), adding
the residual interaction allowing a description of nuclei with few particles outside of closed
shells, moving to large model space with active protons and neutrons building up strongly
correlated collective excitations (such as rotational motion). Thereby we emphasize the ef-
fectiveness of symmetries in understanding such excitations. A particular important issue is
understanding the effective in-medium interaction starting from our knowledge of the bare
NN interaction. We have highlighted different routes (microscopic, phenomenological and
schematic) discussing benefits and limitations of each of those methods. It is good to point
out that recently (last decade), important steps have been taken to understand and con-
struct the nucleon force in the atomic nucleus (including both 2- and 3-body forces) allowing
to construct effective forces starting from chiral perturbation theory as a low-energy field
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theory consistent with the symmetries of QCD. This may result in a consistent approach to
connect the observed nuclear properties with a genuine microscopic approach.
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