The mean field approximation to nuclear structure and beyond
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The contents of the three lectures to be delivered at the 2012 edition of the "Ecole Joliot Curie" and
devoted to the description of the mean field approximation and techniques beyond it are sketched.
The focus will be in the description of phenomena in low energy nuclear structure.

The mean field approximation is the starting point for
a quantitative microscopic description of an interacting
many body system. The idea is to replace the intricate
two body interaction among the system’s constituents
by an average mean field. When the constituents are
fermions, like in the atomic nucleus, the mean field ap-
proximation is known under the name of Hartree- Fock
(HF) approximation. As in many other many body sys-
tems, the effective in medium nuclear interaction has a
strong short range attractive component that favors the
formation of "Cooper pairs" that are the essential in-
gredient for phenomena like superfluidity or supercon-
ductivity. In those cases, the HF approximation has
to be generalized in order to incorporate the concept
of quasi-particle leading to the Hartree- Fock- Bogoli-
ubov (HFB) mean field approximation. The mean field
HF and HFB have been used for many years in nuclear
physics to describe a variety of physical observables rang-
ing from binding energies to the moments of inertia of ro-
tational bands. A lot of expertise has accumulated about
the required properties that a good phenomenological in-
medium nuclear interaction must have in order to provide
a reasonable agreement for many quantities all over the
Chart of Nuclide and, as a consequence, a wealth of them
are available in the market. At the dawn of the century
the general consensus was that both the HFB method-
ology and the phenomenological interactions to be used
were reasonably well understood and therefore, to im-
prove our understanding of the atomic nucleus, other
many body effects had to be considered. A typical exam-
ple is the inclusion of beyond mean field correlations (see
below) to improve the description of binding energies and
the subsequent impact on other observables that depend
on them.

One of the defining characteristics of the mean field ap-
proximation when applied to the atomic nucleus is that
very often the solution obtained does not preserve the
symmetries of the interaction. Typical examples are the
breaking of rotational invariance, that leads to the con-
cept of deformed intrinsic states, or the breaking of par-
ticle number symmetry associated to nuclear superfluid-
ity and the HFB approximation. Although this spon-
taneous symmetry breaking is an artifact of the mean
field approximation it has the ability to grasp within the
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mean field framework many relevant correlations like,
for instance, the ones leading to the appearance of ro-
tational bands in the low energy spectrum of many nu-
clei. As a consequence of symmetry breaking the result-
ing wave function can not be labeled with well defined
quantum numbers (particle number, angular momentum,
etc). This is irrelevant for some quantities like binding
energies or radii if the level of accuracy required is not
too high, but it has fundamental consequences for oth-
ers like transition probabilities where the lack of good
quantum numbers makes the concept of "selection rules"
(particular choices of the quantum numbers that make
the corresponding matrix element to exactly vanish) in-
applicable. As a consequence, it is mandatory in some
applications to restore the broken symmetries using lin-
ear combinations with appropriated weights of a set of
wave functions obtained by acting with the corresponding
symmetry operation on the HFB intrinsic state. The im-
plementation of these ideas is far from being a trivial task
as there remain fundamental issues like how to deal with
density dependent effective forces, or technical issues like
how to evaluate efficiently the required overlaps. Last
but not least, the computational requirements are rather
high and often top class supercomputers are required to
analyze specific regions of the periodic table with these
techniques. This last aspect calls for approximate imple-
mentations of symmetry restoration that usually rely on
what is called "Gaussian overlap approximation". Here,
the main assumption is that the overlap between two dif-
ferent HFB wave functions can be approximated rather
well by an analytical expression of the Gaussian type.
When this GOA (or its derivations) are implemented, an
economical and sound evaluation of many nuclear prop-
erties in many nuclei is possible.

The key ingredient of symmetry restoration, namely
the use of linear combinations of HFB type wave func-
tions can be also be used to account for long range cor-
relations. The admixture of mean field configurations
known as the Generator Coordinate Method (GCM) is
the tool of choice to deal with the phenomenon of coex-
istence where two or more different mean field configu-
rations (for instance, a prolate and an oblate configura-
tion) have a similar energy and feel a strong interaction
among them. In the GCM method, the variational prin-
ciple leads to the Hill-Wheeler equation that determines
the amplitudes of the intrinsic configurations in the cor-
related wave functions. All the quantities entering the
HW equation can be evaluated with the same techniques



used in symmetry restoration and therefore it is not sur-
prising that the same GOA approximation can be used
here to reduce the computational needs. The GOA ap-
proximation reduces the HW equation, which is a kind
of non-local equation to a local approximation known as
the "collective Schrodinger equation" that is much easier
to solve and its solutions are easier to interpret.

In the three lectures devoted to "mean field and be-
yond" I will try to cover the main aspects of the tech-
niques discussed above and a tentative schedule could be

e Lecture 1: The mean field approximation for
fermions: the Hartree-Fock method. Variational
method and HF equation. Short range correla-
tions and pairing: the Hartree- Fock- Bogoliubov
method. Characterization of HFB wave functions:
the Thouless theorem and the Bloch-Messiah the-
orem. Solution of the HFB and constrained HFB
equation with gradient-like methods. Phenomeno-
logical interactions: the Skyrme, Gogny and rela-
tivistic families. Applications of the HFB method:
i) potential energy surfaces 2) High spin physics
and the cranking method.

e Lecture 2: Spontaneous symmetry breaking in
HFB. Restoration of symmetries with projection
operators. Intrinsic vs laboratory wave functions.
The Variation After Projection (VAP) and Projec-
tion After Variation (PAV) methods. Transition

probabilities and selection rules. Parity projec-
tion as an example. Approximate projection, the
"Gaussian overlap approximation" (GOA) and its
extensions. Recovering the cranking method and
understanding moments of inertia. Recovering the
rotational formula for transition probabilities and
assessing its applicability.

e Lecture 3: Beyond HFB: configuration mixing
and the Generator coordinate method. The Hill-
Wheeler equation. Evaluation of operator overlaps:
The Generalized Wick theorem. The GOA and the
derivation of a collective hamiltonian. Where do
we stand and what can be expected in the future ?

Concerning the bibliography there are many excellent
review articles and textbooks available and here we will
just give a sample of the many possible choices and defer
a more exhaustive list for the course notes. The first
textbook is the well known book by Ring and Schuck [1].
It combines a rigorous treatment of the subject with a
wealth of examples and applications. Next, we have the
monograph by Blaizot and Ripka [2] that is more theory
oriented emphasizing the formals aspects in detriment of
the more phenomenological aspects. Finally the review
article by Bender, Heenen and Reinhard [3] is a modern
account of the theoretical developments taken place in
nuclear structure in the last years.
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