

www.superheavies.de c.e.duellmann@gsi.de

Quest for Superheavy Elements

Christoph E. Düllmann

Johannes Gutenberg-Universität, Mainz

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt

Helmholtz Institut Mainz

Ecole Joliot-Curie "Nucleus through the looking glass – High intensity stable and ISOL beam frontier" La Villa Clythia – Fréjus – France – September 30-October 05, 2012

What's on the menu this week?

-Discovery of the transuranium elements: Z=93 - 112 -Stability of superheavy elements I

Lesson 2:

-Discovery of the transuranium elements: Z=113- ... -Stability of superheavy elements II

Lesson 3:

-Reactions: synthesis of SHE

-Search for new elements at GSI

Synthesis of SHE

It's all about the cross section...

Energetics of the reactions

Analog to α decay.

Example: ${}^{24}Mg + {}^{242}Cm \rightarrow {}^{266}Hs^*$

 $\Delta(^{242}\text{Cm}) + \Delta(^{24}\text{Mg}) = \Delta(^{266}\text{Hs}) + Q$

Therefore:

 $\mathsf{Q} = \Delta(^{242}\mathsf{Cm}) + \Delta(^{24}\mathsf{Mg}) - \Delta(^{266}\mathsf{Hs})$

Using mass excess values from "Atomic Mass Evaluation 2003" (A.H. Wapstra et al., Nucl. Phys. A 729 (2003) 337) yields:

Q = 54.81 MeV + (-13.93 MeV) - 121.19 MeV = -80.31 MeV

Excitation energies at the Coulomb barrier

An important property of a heavy-ion induced fusion reaction is the excitation energy of the compound nucleus if the beam energy corresponds to the Coulomb barrier height

Generally: $E^* = V_C(c.m.) + Q$

Excitation energies at the Bass barrier for different reactions:

Cross Section for EVR Formation

Cross Section for EVR Formation

The exit channel: Γ_n / Γ_{tot}

Spherical nuclei:

-Density of states above the neutron emission saddle point: very small.

-Density of states above (deformed) saddle point: very large.

⇒ Spherical nuclei hardly survive, but fission!

⇒ Synthesis of magic (spherical) nuclei should be extremely difficult!

For SHE: $\Gamma_{tot} \sim \Gamma_{f}$

CN survival probablility depends on number of states in the energy intervals between total energy (or: mass) and the masses of the neutron emission saddle point and the fission saddle point.

> W. Swiatecki et al., PRC 71 (2005) 014602

Production of Heavy Elements in Complete Fusion Reactions

 We need to know three spin-dependent quantities: (a) the capture cross section, (b) the fusion probability and (c) the survival probability, and their isospin dependence

Courtesy of W. Loveland, 2012

Capture cross sections:

- For the 50-150 "calibration" reactions, we know capture cross sections within 50%
- We know interaction barriers within 20%
- For the heavy element synthesis reactions, we know the capture cross sections within a factor of 2.

 The "coupled channels" calculations (such as Zagrebaev) do the best overall job of describing capture cross sections.

Courtesy of W. Loveland, 2012

CN cross sections

At ℓ_{crit} fission barrier damped to about 1/e of $\ell = 0$ height

With $\ell_{crit} = 15\hbar$: σ_{cap} about 10-100 mb.

Cross section for Z=112: about 1 pb

$$\rightarrow p_{CN} \bullet W \begin{bmatrix} i_{max} \\ \prod_{i=1}^{i} \left(\frac{\Gamma_n}{\Gamma_{tot}} \right)_i, E^* \end{bmatrix} ist \sim 10^{-10}$$

Physics of p_{CN} and of W largely different! Experimentally, the measurement of the individual contributions is difficult. Only product is known pretty well.

 \rightarrow Different theoretical models have drastically different values for p_{CN} and W, only the product of the two is identical (and thus allows for correct description of experimental cross sections)

P_{CN} results

Courtesy of W. Loveland, 2012

How well can we calculate W_{sur}?

- We took a group (~75) heavy element synthesis reactions where Z₁Z₂ < 1000 (Z_{CN} =98-108) and compared the calculated and measured values of σ_{EVR}.
 The average ratio of
 - (measured/calculated) cross sections

was 6.5. We conclude that we know W_{sur} within a factor of 3.

Courtesy of W. Loveland, 2012

Production of heavy elements

Asymmetric reactions with actinide targets:

- Small fusion hindrance
 - \rightarrow High fusion cross section
- High excitation energy in CN
 - \rightarrow Hot fusion
 - \rightarrow Multiple neutron-evaporation steps
 - \rightarrow Big losses in exit channel

(More) symmetric reactions, Pb/Bi targets:

Considerable fusion hindrance → Small fusion cross section Low excitation energy in CN thanks to shell effects in the target

- \rightarrow Cold fusion
- \rightarrow Only ~1 neutron evaporation step
- \rightarrow Small losses in exit channel

FLNR/GSI: Cold fusion

Shell effects around ²⁰⁸Pb decrease excitation energy in CN \rightarrow evaporation of fewer neutrons \rightarrow loss in exit channel smaller \rightarrow should enhance cross sections ²⁰⁷Pb(⁴⁰Ar,3n)²⁴⁴Fm ²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No

→ high cross sections measured at FLNR!

Fig. 5. Minimum excitation energy of the compound nuclei ²⁴⁸Fm and ²⁵⁸Ku formed in different target-projectile combinations. The dashed curves are drawn through the calculated E^*_{min} values shown by points.

Cross Sections in Hot / Cold / 48Ca Induced Fusion Reactions

"Influence" of the N=126-shell on σ

≎ ∆

Ο

⁽ⁱ⁾Ar+Hf ⁽ⁱ⁾Ar+Hf ⁽ⁱ⁾Ar+Hf ⁽ⁱ⁾Ar+Hf ⁽ⁱ⁾Ar+Hf ⁽ⁱ⁾Ar+Hf ⁽ⁱ⁾Ar+Hf</sub> ⁽ⁱ⁾Ar+Hf</sub><

4He+226Ra

¹⁸0+²⁰⁸Pb

¹⁶O+²⁰⁶Pb

survive!

 \rightarrow N=126 shell has basically no influence on σ

Spherical nuclei do barely

 $\Gamma_{\rm n}/\Gamma_{\rm f}$ worse by orders of

Fig. 6. Data points: Maxima of the 4n excitation-functions as a function of the neutron number for Th evaporation residues. The factor $1/(\pi \lambda^2 15^2)$ was applied in order to remove trivial entrancechannel effects for different target-projectile combinations and to make the ordinate scale approximately equal to the survival probability $\Pi(\Gamma_n/\Gamma_{tot})$ times the transmission coefficient of the fusion barrier for low angular momentum [9]. Lines: Calculated survival probability $\Pi(\Gamma_n/\Gamma_{tot})$ for zero angular momentum. Solid line: standard evaporation calculation. Dashed line: evaporation calculation without shell effects

D. Vermeulen et al., Z. Phys. A 318 (1984) 157

Eur. Phys. J. A **37**, 159–167 (2008) DOI 10.1140/epja/i2008-10607-5

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Experimental Physics

Shifting the closed proton shell to Z=122 —A possible scenario to understand the production of superheavy elements Z=112--118

P. Armbruster^a

GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt, Germany

-Analysis of Q_{α} values: Z=114 not magic!

-Periodicities in chart of nuclei: next magic Z ~ 122 \rightarrow ALL so far found SHE are NOT spherical, but oblately DEFORMED

Eur. Phys. J. A **37**, 159–167 (2008) DOI 10.1140/epja/i2008-10607-5

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Experimental Physics

Shifting the closed proton shell to Z=122 —A possible scenario to understand the production of superheavy elements Z=112--118

P. Armbruster^a

GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt, Germany

-Analysis of Q_{α} values: Z=114 not magic!

-Periodicities in chart of nuclei: next magic Z ~ 122 \rightarrow ALL so far found SHE are NOT spherical, but oblately DEFORMED

-Fission of oblate nuclei over prolate saddle point hindered $\rightarrow \Gamma_n / \Gamma_f$ favorable! High cross sections due to strong effects in EXIT channel

(But: there are models with magic Z=114 @ N=184, where Z=114 is not magic at smaller N, in the region of nuclei accessible in 48 Ca+actinides)

Armbruster's model: theory vs. experiment

Landing points of heavy ion induced fusion reactions Model w/ Z=114 magic

Pb/Bi targets; cold fusion (E*~10-15 MeV), n-poor isotopes

Light projectiles $({}^{12}C \sim {}^{30}Si)$ +actinide targets; hot fusion (E*~50 MeV), n-rich isotopes up to ~Z=108

⁴⁸Ca beam + actinide targets; warm/hot fusion (E*~30-50 MeV), n-rich isotopes

Search for new elements

Again: it's all about the cross section...

Ch.E. Düllmann – Quest for Superheavy Elements – Ecole Joliot Curie 12 – Fréjus, France – September 30 – October 05, 2012

Ch.E. Düllmann – Quest for Superheavy Elements – Ecole Joliot Curie 12 – Fréjus, France – September 30 – October 05, 2012

Making elements 119 and 120

E119

E120

Z _{Beam}	Beam	Target	Asymmetry	E*@B _{Bass}
21	⁴⁵ Sc	²⁴⁹ Cf		41.7
22	⁵⁰ Ti	²⁴⁹ Bk		32.4
23	⁵¹ V	²⁴⁸ Cm		36.8
24	⁵⁴ Cr	²⁴³ Am]	31.5
25	⁵⁵ Mn	²⁴⁴ Pu		37.7
26	⁵⁸ Fe	²³⁷ Np] 🛛 🖌 🚽	29.9
27	⁵⁹ Co	²³⁸ U		36.7
Z _{Beam}	Beam	Target	Asymmetry	E*@B _{Bass}
Z _{Beam}	Beam ⁵⁰ Ti	Target ²⁴⁹ Cf	Asymmetry	E*@B _{Bass} 31.7
Z _{Beam} 22 23	Beam ⁵⁰ Ti ⁵¹ V	Target ²⁴⁹ Cf ²⁴⁹ Bk	Asymmetry	E*@B _{Bass} 31.7 35.9
Z _{Beam} 22 23 24	Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr	Target ²⁴⁹ Cf ²⁴⁹ Bk ²⁴⁸ Cm	Asymmetry	E*@B _{Bass} 31.7 35.9 33.0
Z _{Beam} 22 23 24 25	Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr ⁵⁵ Mn	Target 249Cf 249Bk 248Cm 243Am	Asymmetry	E*@B _{Bass} 31.7 35.9 33.0 34.5
Z _{Beam} 22 23 24 25 26	Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr ⁵⁵ Mn ⁵⁸ Fe	Target 249Cf 249Bk 248Cm 243Am 244Pu	Asymmetry	E*@B _{Bass} 31.7 35.9 33.0 34.5 33.9
Z _{Beam} 22 23 24 25 26 27	Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr ⁵⁵ Mn ⁵⁸ Fe ⁵⁹ Co	Target 249Cf 249Bk 248Cm 243Am 244Pu 237Np	Asymmetry	E*@B _{Bass} 31.7 35.9 33.0 34.5 33.9 32.9

Ch.E. Düllmann – Quest for Superheavy Elements – Ecole Joliot Curie 12 – Fréjus, France – September 30 – October 05, 2012

Cross Sections for Production of Element 120

 50 Ti + 249 Cf \Rightarrow 299 120

Cross sections: current predictions from theory

⁵⁰Ti+²⁴⁹Cf Excitation Function

⁵⁰Ti+²⁴⁹Cf Excitation Function

NEWSFOCUS

9 September 2011 | \$10

Science

SUPERHEAVY ELEMENTS

Which Way to the Isla

Last month at the Helmholtz Centre for Ion Research (GSI) in Darmstadt, Gerr team of physicists and chemists from the globe began firing an intense be titanium ions at a thin foil made of c nium. They will continue to bombard and night, until October.... Science 333 (

The Hunt for Element 120

2012: ⁵⁰Ti+²⁴⁹Bk **Agreement 1: 3n exit channel** 4n is larger than 3n **4n exit channel Agreement 2: Position (in E) of maximum** σ / fb Liu + Bao 10 (Möller 1995; FRDM) Wang et al. (Liu 2011; WS3) **Zagrebaev + Greiner** (Myers 1996; TF) ▼ Siwek-Wilczynska 1 (Muntian 2003) 260 280 290 270 E_{Lab} / MeV

Ch.E. Düllmann – Quest for Superheavy Elements – Ecole Joliot Curie 12 – Fréjus, France – September 30 – October 05, 2012

A new <u>ANalog/DIgital</u> (ANDI) DAQ system for µs-isotopes

Dead-time free! Lifetimes down to about 100 ns can be measured

Ch.E. Düllmann – Quest for Superheavy Elements – Ecole Joliot Curie 12 – Fréjus, France – September 30 – October 05, 2012

Current status of experiment

⁵⁰Ti beam 750 nA_p and ²⁴⁹Bk targets with initial thickness \approx 0.44 mg/cm².

Conclusion

Superheavy elements are a cool research topic! Elements up to 112 + 114 + 116 named. All elements up to 118 claimed Rich field:

- -Synthesis
- -Structure
- -Decay properties
- -Mass measurements
- -Chemical properties

GSI 2012: Element 119 search (⁵⁰Ti + ²⁴⁹Bk) at TASCA

Superheavy elements are a really cool research topic!

You are a great student class!

Thanks for listening AND discussing!

Literature: Recommended Books

Text books:

 G.T. Seaborg + W.D. Loveland The elements beyond uranium Wiley, New York, 1990 ISBN 0-471-89062-6

 M. Schädel (Ed.) The Chemistry of Superheavy Elements Kluwer, Dordrecht, 2003 ISBN 1-4020-1250-0

Historical reminiscies of three giants in SHE :

 D.C. Hoffman, A. Ghiorso, G.T. Seaborg The Transuranium People: The Inside Story Imperial College Press, London, 2000; ISBN 1-86094-087-0

Literature: Overview Articles

Discovery of the actinide elements (G.T. Seaborg, Radiochim. Acta 71/71 (1995) 69

Superheavy elements at GSI (Ch.E. Düllmann, Radiochim. Acta 100 (2012) 67) (current overview article about GSI superheavy element research)

Radiochimica Acta **Special Issue "Heavy Elements"** on occasion of the "International Year of Chemistry: Volume 99 / Issue 7-8, 2011: <u>http://www.oldenbourg-link.com/toc/ract/99/7-8</u>

(All articles available in open access, no subscription needed!)

Includes:

- 1) Production and properties of transuranium elements (Y. Nagame and M. Hirata)
- 2) Theoretical description of superheavy nuclei (A. Sobiczewski)
- 3) Synthesis of superheavy elements by cold fusion (S. Hofmann)
- 4) Synthesis of the heaviest elements in ⁴⁸Ca-induced reactions (Yu.Ts. Oganessian)
- 5) Spectroscopy of actinide and transactinide nuclei (R.-D. Herzberg and D. M. Cox)
- 6) Superheavy element studies with preseparated isotopes (Ch.E. Düllmann)
- .. and some further articles