

www.superheavies.de c.e.duellmann@gsi.de

Quest for Superheavy Elements

Christoph E. Düllmann

Johannes Gutenberg-Universität, Mainz

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt

Helmholtz Institut Mainz

Ecole Joliot-Curie "Nucleus through the looking glass – High intensity stable and ISOL beam frontier" La Villa Clythia – Fréjus – France – September 30-October 05, 2012

What's on the menu this week?

Lesson 1:

-Discovery of the transuranium elements: Z=93 - 112 -Stability of superheavy elements I

-Discovery of the transuranium elements: Z=113- ... -Stability of superheavy elements II

-Reactions: synthesis of SHE

-Search for new elements at GSI

Introduction: looking back a few decades...

The Periodic Table 1939

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	ů	9 F	. 10 Ne
11 Nа	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 M n	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	³¹ Gа	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 N b	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 C d	49 (n	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57-71 La Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	90 Th	91 Pa	92 U	(93)	(94)	(95)	(96)	(97)	(98)	(99)	(100)				
		Ţ															

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	N d	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	¥b	Lu

Np: Milking of U-daughter; not Re-like

Pu: not Os-like

			1	0	9	10	11	12	13	14	15	16	17
Sc Zı	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	
La H [.]	Ta	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At
Ac Th	Pa	U	Np	Pu									

La Ce Pr NdPmSmEu Gd Tb Dy Ho Er TmYb Lu

Np: Milking of U-daughter; not Re-like Pu: not Os-like \Rightarrow Uranide-concept

E95 attempts fail

95	۸m		²³⁹ Am	²⁴⁰ Am	²³⁹ Pu	
	АШ		?	?	+ d	
04			238Pu	239Pu	240Pu	241PL
94	Pu		88 a	2e5 a		14 a
02				238Np	239Np	238U
33	Νр			2 d	2 d	+ d
02		235U	235U		238U	238U
32	U	stable	+ n		stable	+ n

	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Sc	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	
La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At
Ac	AcThPaU NpPu 95													
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu

Np: Milking of U-daughter; not Re-like
Pu: not Os-like ⇒ Uranide-concept
E95 attempts fail ⇒ Actinide concept
Am+Cm thanks to An concept

96	Cm		²⁴⁰ Cm		²⁴² Cm	²³⁹ Pu
	CIII		27 d		160 d	+α
95	۸m				²⁴¹ Am	²⁴² Am
	AIII				4e2 a	16 h
94	Du		238Pu	239Pu	²⁴⁰ Pu	241Pu
	гu		88 a	2e5 a		14 a
93	Mn			238Np	239Np	238U
	мр			2 d	2 d	+ d
92		235U	235U		238U	238U
	U	stable	+ n		stable	+ n
					N T	

3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Sc	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	
La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At
Ac														
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Ac	Th	Pa	U	Np	Pu	Am	Cm							

Np: Milking of U-daughter; no Pu: not Os-like ⇒ Uranide-cor E95 attempts fail \Rightarrow Actinide c Am+Cm thanks to An concept **Bk+heavier: Chromatographic**

β+ **SF** ß α stable

Ζ

					243 B k		241 An
97	Bk						,
					5 h		+α
96	Cm		²⁴⁰ Cm		²⁴² Cm	²³⁹ Pu	
	CIII		27 d		160 d	+α	
05			²³⁹ Am	²⁴⁰ Am	241Am	242Am	
90	Am		?	?	4e ² a	16 h	
04			238Pu	239Pu	240Pu	241Pu	
94	Pu		88 a	2e5 a		14 a	
02				238Np	239Np	238U	
93	Np			2 d	2 d	+ d	
02		235U	235U		238U	238U	
92	U	stable	+ n		stable	+ n	

Fig. 5.3. Original elution data corresponding to the discovery of berkelium (²⁴³Bk); S.G. Thompson, A. Ghiorso, and G.T. Seaborg, December 19, 1949; Dowex-50 eluted with citrate at 87°C.

]														
3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Sc	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I
La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At
Ac				_						- · · · ·				
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk						

Np: Milking of U-daughter; not Re-like
Pu: not Os-like ⇒ Uranide-concept
E95 attempts fail ⇒ Actinide concept
Am+Cm thanks to An concept
Bk+heavier: Chromatographic separation of An

Np: Milking of U-daughter; not Re-like
Pu: not Os-like ⇒ Uranide-concept
E95 attempts fail ⇒ Actinide concept
Am+Cm thanks to An concept
Bk+heavier: Chromatographic separation of An

Np: Milking of U-daughter; not Re-like
Pu: not Os-like ⇒ Uranide-concept
E95 attempts fail ⇒ Actinide concept
Am+Cm thanks to An concept
Bk+heavier: Chromatographic separation of An
Es/Fm: The elements from the bomb

Np: Milking of U-daughter; not Re-like
Pu: not Os-like ⇒ Uranide-concept
E95 attempts fail ⇒ Actinide concept
Am+Cm thanks to An concept
Bk+heavier: Chromatographic separation of An
Es/Fm: The elements from the bomb

Ζ

T_{1/2}(SF) of ²⁵⁸Fm: 0.37 ms !!!

Production of transuranium nuclides in a high flux reactor

Lessons learned

- Elements up to Fm can be produced in a reactor, heavier ones not
- Reactor-produced long-lived nuclides: targets for accelerator based experiments. Heaviest targets: ²⁴⁸₉₆Cm, ²⁴⁹₉₇Bk, ²⁴⁹₉₈Cf (²⁵³₉₉Es)
- Nuclear properties can change dramatically by adding/removing one single nucleon
- Correct assumptions of the structure of the Periodic Table needed for chemical experiments

Map of the Nuclear Landscape

The Fission Barrier

Liquid drop model includes two deformation-dependent terms:

The Coulomb energie decreases with increasing deformation due to the larger average proton-proton distance

The surface energy increases with increasing deformation as the sphere is the body with minimum surface for a given volume

Influence of shell effects on fission barrier

Influence of shell effects on fission barrier

Influence of Shell Effects on SF Half-Lives

The quest for "SuperHeavy Elements" (SHE)

Md: Es target: 1e9 atoms First "single atom chemistry"

Md: Es target: 1e9 atoms First "single atom chemistry"

102+: only with A>4 beams: "Heavy Ion Beams"

No: Name from disproven Oslo exp. (¹³C+²⁴⁴Cm)

FLNR/GSI: Cold fusion

Shell effects around ²⁰⁸Pb decrease excitation energy in CN \rightarrow evaporation of fewer neutrons \rightarrow loss in exit channel smaller \rightarrow should enhance cross sections ²⁰⁷Pb(⁴⁰Ar,3n)²⁴⁴Fm ²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No

→ high cross sections measured at FLNR!

Fig. 5. Minimum excitation energy of the compound nuclei ²⁴⁸Fm and ²⁵⁸Ku formed in different target-projectile combinations. The dashed curves are drawn through the calculated E^*_{min} values shown by points.

Experimental Techniques

Introduction to GSI Physics experiments at recoil separators

SHE Separators world-wide

gas-filled

vacuum

•9

10

- 1: Berkeley Gas-filled Separator (BGS), LBNL, Berkeley (USA)
- 2: Fragment Mass Analyzer (FMA), ANL, Argonne (USA)
- 3: Ligne d'Ions Super Epluchés (LISE III), GANIL, Caen (F)
- 4: Separator for Heavy Ion Products (SHIP), GSI, Darmstadt (D)
- 5: TransActinide Separator and Chemistry Apparatus (TASCA), GSI
- 6: Recoil Ion Transport Unit (RITU), JYFL, Jyväskylä (SF)
- 7: Dubna Gas-Filled Recoil Separator (DGFRS), FLNR, Dubna (RU)
- 8: VASSILISSA, FLNR, Dubna (RU)

20

- 9: Gas-filled recoil separator at Lanzhou, IMP, Lanzhou (PRC)
- 10:GAs-filled Recoil Ion Separator (GARIS/GARIS II), RIKEN, Wako (J)

GSI Helmholtzzentrum für Schwerionenforschung mbH Facility for Antiproton and Ion Research

SHE Research at GSI

Separation in E and M Dipol

Different ionic species are spatially separated by exploiting their different response (=radius of curvature) to the Lorentz force:

$$\vec{\mathbf{F}} = \mathbf{q} \cdot \left(\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}} \right)$$

Separators are built such that all vectors are orthogonal (or radial, in case of the E dipole). Then equating with the centrifugal force yields the respective rigidities:

Electric dipole:
$$\mathbf{E} \cdot \rho [\mathsf{MV}] = \frac{\mathbf{m} \cdot \mathbf{v}^2}{q}$$
Magnetic dipole: $\mathbf{B} \cdot \rho [\mathsf{T} \cdot \mathbf{m}] = \frac{\mathbf{m} \cdot \mathbf{v}}{q}$ Magnetic quadrupole multiplets as ion-optical lenses for focusing

Separation in Vacuum Separator for Heavy Ion reaction Products – SHIP

Generic Recoil Separator Detection System

Average charge state in dilute He

 $B\rho [T \cdot m] = m \cdot v/q \approx 0.0227 \cdot (v/v_0) \cdot A/q$

Superheavy elements on the mic-mac landscape of today

The **ES** i elements discovered at SHIP: Z=107: ²⁰⁹Bi(⁵⁴Cr,n)²⁶²Bh Z=109: ²⁰⁹Bi(⁵⁸Fe,n)²⁶⁶Mt Z=108: ²⁰⁸Pb(⁵⁸Fe,n)²⁶⁵Hs Z=110: ²⁰⁸Pb(⁶²Ni,n)²⁶⁹Ds Z=111: 209 Bi(64 Ni,n) 271 Rg Z=112: ²⁰⁸Pb(⁷⁰Zn,n)²⁷⁷Cn

SHIP Excitation Functions with ²⁰⁸Pb Targets

Cross Sections in Hot / Cold / 48Ca Induced Fusion Reactions

Question

Now where is the next magic number beyond Z=82?

Nuclear shells

M. Bender et al., Phys. Lett. B 515 (2001) 42

Nuclear shells

M. Bender et al., Phys. Lett. B 515 (2001) 42