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BASIC WEAK-DECAY EQUATION

f = f(Z, ) 
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statistical rate function:  QEC

t BR1/2

EXPERIMENT

ft  =
K

2G <  >V t
2 2G <     >A st2+

J  ,½ p

J  ,½ p

+ b asymmetry

INCLUDING RADIATIVE CORRECTIONS

  t = ft (1 + )[1 - (  - )] = d dR C dNS

K
2

G  (1 + )V DR

,
(1

2l<     > )st+

Requires additional experiment:
for example, b asymmetry (A)

l =  G /GA V

2

NEUTRON DECAY



NEUTRON DECAY DATA 2012

Mean life:

t = 880.4 + 1.2 s
880

900

1990 1995 2000 2005

Date of measurement

M
e

a
n

 l
if

e

-1.28

-1.27

-1.26

1990 1995 2000 2005

Date of measurement

B
e

ta
 a

s
y

m
m

e
tr

y

b asymmetry:

l = -1.2728 + 0.0022

/N = 4.6c2

V  = 0.9754 + 0.0016ud

-

2010

-

/N = 3.5c2

2010

-

V  = 0.9743 + 0.0002ud -

nuclear 0     0 + +



NUCLEAR T=1/2 MIRROR DECAY DATA 2009

1510 20
Z of daughter

6000

7000

6500

(1
2

l
<

  
  
 >

)
s
t

+
t

19Ne

37
K35Ar

29
P

21
Na

Naviliat-Cuncic & Severijns
PRL 102, 142302 (2009)

  t = ft (1 + )[1 - (  - )] = d dR C dNS

K
2G  (1 + )V DR

,
(1

2 2
l<     > )st+

V  = 0.9719 + 0.0017ud -
V  = 0.9743 + 0.0002ud -

nuclear 0     0 + +



PION BETA DECAY 

Decay process:
  

p        p e  ne
+ 0 +

0 ,1           0 ,1- -

Experimental data:

t = 2.6033  + 0.0005 x 10   s       -8
- (PDG 2009)

BR = 1.036  + 0.007 x 10      -8
- Pocanic et al, 

PRL 93, 181803 (2004)

V  = 0.9749 + 0.0026ud -

Result:

V  = 0.9743 + 0.0002ud -

nuclear 0     0 + +



CURRENT STATUS OF V   – 2009   ud

.9700

.9800

.9750

nuclear
0       0+ +

neutron nuclear
mirrors

pion

.001

.003

.002

Vud

U
n

c
e
rt

a
in

ty

Experiment Radiative correction Nuclear correction

V  = 0.97425 + 0.00022ud



1. Radiative corrections
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CURRENT DIRECTION OF NUCLEAR EXPERIMENTS

Strategy is to probe the
nucleus-to-nucleus variation
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$

74Rb

34Ar

14O

42Sc

46V
50Mn

54Co

22Mg

,

38mK

22Mg

34Ar

62Ga

74Rb

62Ga



SUMMARY AND OUTLOOK

3. The current value for V , when combined with  andud

    V , satisfies CKM unitarity to 0.06%.ub

Vus

1. Analysis of superallowed 0     0  nuclear b decay is shown
   to confirm CVC and thus yield V  = 0.97425(22).ud

2. The three other experimental methods for determining V  ud

    yield consistent results, but are less precise by a factor
    of 8 or more.

+ +

5. These symmetry-breaking corrections can be tested by
    requiring consistency among 13 known transitions (CVC).
    Standard corrections pass the test; a few others do too.

4. The largest contribution to the V  uncertainty is from the ud

    inner radiative correction.  Isospin symmetry-breaking
    corrections in nuclei are the second largest.

6. They can be further tested and improved by higher
    experimental precision and by new transitions from
    T = -1 parents.Z 




