SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 < >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$ t = partial half-life: $f(t_{1/2}, BR)$ G_v = vector coupling constant < > = Fermi matrix element

INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

WORLD DATA FOR $0^+ \rightarrow 0^+$ DECAY, 2009

Ν

NUMBER OF PROTONS,

Z of daughter

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$\mathcal{T}t = ft(1 + i_{R})[1 - (i_{C} - i_{NS})] = \frac{K}{2G_{V}^{2}(1 + i_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

$$G_v$$
 constant to ± 0.013%

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$7t = ft (1 + i_{R})[1 - (i_{C} - i_{NS})] = \frac{K}{2G_{V}^{2}(1 + i_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate correction terms

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$7t = ft (1 + i_{R})[1 - (i_{C} - i_{NS})] = \frac{K}{2G_{V}^{2}(1 + i_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate correction terms ✓ Test for Scalar current

$$G_v \text{ constant to } \pm 0.013\%$$

limit, $C_s/C_v = 0.0011$ (14)

THE PATH TO V_{ud}

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$7t = ft (1 + i_{R})[1 - (i_{C} - i_{NS})] = \frac{K}{2G_{V}^{2}(1 + i_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate correction terms ✓ Test for Scalar current

$$G_v$$
 constant to ± 0.013%
limit, C_s/C_v = 0.0011 (14)

WITH CVC VERIFIED

Obtain precise value of $G_v^2 (1 + R)$ Determine V_{ud}^2 $V_{ud}^2 = G_v^2/G^2 = 0.94916 \pm 0.00044$

THE PATH TO V_{ud}

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$7t = ft (1 + i_R) [1 - (i_C - i_Ns)] = \frac{K}{2G_V^2 (1 + i_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate correction terms ✓ Test for Scalar current

$$G_v$$
 constant to ± 0.013%
limit, C_s/C_v = 0.0011 (14)

WITH CVC VERIFIED

Obtain precise value of $G_v^2 (1 + R)$ Determine V_{ud}^2 $V_{ud}^2 = G_v^2/G^2 = 0.94916 \pm 0.00044$

Test CKM unitarity

 $V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.9999 \pm 0.0006$

THE PATH TO V_{ud}

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$7t = ft (1 + i_{R})[1 - (i_{C} - i_{NS})] = \frac{K}{2G_{V}^{2}(1 + i_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate correction terms ✓ Test for Scalar current

$$G_v$$
 constant to $\pm 0.013\%$
limit C /C = 0.0011 (14)

WITH CVC VERIFIED

T=1/2 SUPERALLOWED BETA DECAY

BASIC WEAK-DECAY EQUATION

 $ft = \frac{K}{G_v^2 < >^2 + G_A^2 < >^2}$

f = statistical rate function: $f(Z, Q_{EC})$ t = partial half-life: $f(t_{1/2}, BR)$ $G_{V,A}$ = coupling constants < > = Fermi, Gamow-Teller matrix elements

INCLUDING RADIATIVE CORRECTIONS

NEUTRON DECAY DATA 2012

nuclear 0⁺→0⁺ V_{ud} = 0.9743 ± 0.0002

NUCLEAR T=1/2 MIRROR DECAY DATA 2009

$$\mathcal{7}t = ft (1 + {}^{\prime}_{R}) [1 - ({}_{C} - {}_{NS})] = \frac{K}{G_{V}^{2} (1 + {}_{R})(1 + < {}^{2})^{2}}$$

nuclear 0⁺→0⁺ V_{ud} = 0.9743 ± 0.0002

Decay process:

Experimental data:

 $= 2.6033 \pm 0.0005 \times 10^{-8} \text{ s} \quad (PDG \ 2009)$ BR = 1.036 ± 0.007 × 10⁻⁸ Pocanic *et al*, PRL 93, 181803 (2004)

Result:

 $V_{ud} = 0.9749 \pm 0.0026$

nuclear 0⁺→0⁺ V_{ud} = 0.9743 ± 0.0002

CURRENT STATUS OF V_{ud} – 2009

CALCULATED CORRECTIONS TO 0⁺→0⁺DECAYS

$$7t = ft(1 + {'}_{R})[1 - ({}_{C} - {}_{NS})] = \frac{K}{2G_{v}^{2}(1 + {}_{R})}$$

1. Radiative corrections

$$_{R} = \frac{1}{2} \left[g(E_{m}) + {}_{2} + {}_{3} + \dots \right]$$

$$R = \frac{1}{2} \left[4 \ln(m_z/m_p) + \ln(m_p/m_A) + 2C_{Born} + ... \right]$$
Order- axial-vector universal photonic contributions
$$N = \frac{1}{N} \left[\frac{1}{N} \left[\frac{1}{N} \right] + \frac{1}{N} \left[\frac{1}{N} \left[\frac{1}{N} \right] + \frac{1}{N} \left[\frac{1}{N} \right] + \frac{1}{N} \left[\frac{1}{N} \left[\frac{1}{N} \right] + \frac{1}{N} \left[\frac{1}{N} \left[\frac{1}{N} \right] + \frac{1}{N} \left[\frac{1}{N} \left[\frac{1}{N} \left[\frac{1}{N} \right] + \frac{1}{N} \left[\frac{$$

2. Isospin symmetry-breaking corrections

c Charge-dependent mismatch between parent and daughter analog states (members of the same isospin triplet). Dependent on nuclear structure

С

Difference in configuration mixing between parent and daughter.

C1

 Shell-model calculation with wellestablished two-body matrix elements.

 Charge dependence tuned to known single-particle energies and to measured IMME coefficients.

 Results also adjusted to measured 0⁺ state energies.

0.01-0.3 %

Can these conditions be met for all cases?

 $10 \le A \le 38 \blacklozenge$ $42 \le A \le 54$ $A \ge 62$

C2

Mismatch in radial wave function between parent and daughter.

- Full-parentage Wood-Saxon wave function matched to known binding energy and charge radius from electron scattering.
- Compared with Hartree-Fock calculation matched to known binding energy.
- Core states included based on measured spectroscopic factors.

0.4 – 1.5 %

С

Difference in configuration mixing between parent and daughter.

C1

 Shell-model calculation with wellestablished two-body matrix elements.

 Charge dependence tuned to known single-particle energies and to measured IMME coefficients.

 Results also adjusted to measured 0⁺ state energies.

0.01-0.3 %

Can these conditions be met for all cases?

 $10 \le A \le 38$ $42 \le A \le 54$ \clubsuit $A \ge 62$

C2

Mismatch in radial wave function between parent and daughter.

- Full-parentage Wood-Saxon wave function matched to known binding energy and charge radius from electron scattering.
- Compared with Hartree-Fock calculation matched to known binding energy.
- Core states included based on measured spectroscopic factors.

0.4 – 1.5 %

С

C1

Difference in configuration mixing between parent and daughter.

 Shell-model calculation with wellestablished two-body matrix elements.

 Charge dependence tuned to known single-particle energies and to measured IMME coefficients.

 Results also adjusted to measured 0⁺ state energies.

0.01-0.3 %

Can these conditions be met for all cases?

 $10 \le A \le 38$ $42 \le A \le 54$ $A \ge 62$

C2

Mismatch in radial wave function between parent and daughter.

- Full-parentage Wood-Saxon wave function matched to known binding energy and charge radius from electron scattering.
- Compared with Hartree-Fock calculation matched to known binding energy.
- Core states included based on measured spectroscopic factors.

0.4 – 1.5 %

c = C1 + C2

Difference in configuration mixing between parent and daughter.

Mismatch in radial wave function between parent and daughter.

Experimental control for _{c1} ✓

Branching ratios to non-analogue 0⁺ states

Parent	Experimental results (ppm)	Calculation (ppm)
^{38m} K	< 12	6 <u>+</u> 2
⁴² Sc	59 ± 14	22 <u>+</u> 22
^{46}V	39 ± 4	18 ± 14
⁵⁰ Mn	< 3	8 <u>+</u> 4
⁵⁴ Co	45 <u>± 6</u>	<u>65 +</u> 25
⁶² Ga	<u>53 ± 25</u>	240 <u>+</u> 80

Ab initio shell model calculation up to 8ħ Caurier *et al.*, PRC 66, 024314 (2002)]

No convergence for $_{c}$ with N up to N_{max}= 8

Full $_{\rm c}$ estimated by perturbation theory: 0.19%

Our result: $_{c} = 0.18(2)\%$

TESTING _c CALCULATIONS AGAINST CVC EXPECTATIONS

$$\mathcal{F}t = ft (1 + \frac{1}{R})[1 - (\frac{1}{C} - \frac{1}{NS})] = \frac{K}{2G_v^2 (1 + \frac{1}{R})}$$
To satisfy CVC,

$$ft (1 + \frac{1}{R})[1 - (\frac{1}{C} - \frac{1}{NS})] = A$$
where A takes the same value for all measured transitions. Therefore

$$c = 1 + \frac{1}{NS} - \frac{A}{ft (1 + \frac{1}{R})}$$

$$\frac{1.5}{0.5} = \frac{1}{0} + \frac{1}{15} + \frac{1}{15}$$

TESTING _c CALCULATIONS

TESTING _c CALCULATIONS

IMPROVEMENTS SINCE 2009

IMPROVEMENTS SINCE 2009

Strategy is to probe the nucleus-to-nucleus variation in $_{\rm c}$ - $_{\rm NS}$.

* Increase measured precision on nine best *ft*-values

- * Increase measured precision on nine best *ft*-values
- * measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)

- * Increase measured precision on nine best *ft*-values
- * measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)
- * measure new $0^+ \rightarrow 0^+$ decays with A \geq 62 (T_z = 0)

- * Increase measured precision on nine best *ft*-values
- * measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)
- * measure new $0^+ \rightarrow 0^+$ decays with A \geq 62 (T_z = 0)

SUMMARY AND OUTLOOK

- 1. Analysis of superallowed 0⁺→0⁺nuclear decay is shown to confirm CVC and thus yield V_{ud} = 0.97425(22).
- 2. The three other experimental methods for determining V_{ud} yield consistent results, but are less precise by a factor of 8 or more.
- 3. The current value for V_{ud} , when combined with V_{us} and V_{ub} , satisfies CKM unitarity to 0.06%.
- 4. The largest contribution to the V_{ud} uncertainty is from the inner radiative correction. Isospin symmetry-breaking corrections in nuclei are the second largest.
- 5. These symmetry-breaking corrections can be tested by requiring consistency among 13 known transitions (CVC). Standard corrections pass the test; a few others do too.
- 6. They can be further tested and improved by higher experimental precision and by new transitions from $T_z = -1$ parents.