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f = statistical rate function: f (Z, Q)

t = partial half-life: f (t,,, BR) v
G, = vector coupling constant
<T > = Fermi matrix element \_ EXPERIMENT/
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THE PATHTO V.,

FROM A SINGLE TRANSITION

FROM MANY TRANSITIONS

WITH CVC VERIFIED
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THE PATHTO V.,
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THE PATHTO V.,

FROM A SINGLE TRANSITION
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T=1/2 SUPERALLOWED BETA DECAY

BASIC WEAK-DECAY EQUATION / N\

B K
T GXT>*4+G2<0T>’

ft

f = statistical rate function: f(Z, Q..)
t = partial half-life: f(t,,, BR)

G, .= coupling constants

< > = Fermi, Gamow-Teller matrix elements K EXPERIMENT/

+ 3 asymmetry

INCLUDING RADIATIVE CORRECTIONS

’ — K Cp—
Ft=1ft(1+35,)[1- W] G/ (1+A)(1K)i<0T>)
/

) = G,IG,

Requires additional experiment:
for example, 3 asymmetry (A)

NEUTRON DECAY



NEUTRON DECAY DATA 2012
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NUCLEAR T=1/2 MIRROR DECAY DATA 2009
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PION BETA DECAY

Decay process:
nt— mletyv,
0,1— 0,1

Experimental data:

T =2.6033 + 0.0005 x 108s (PDG 2009)

BR =1.036 + 0.007 x 10  Pocanic et al,
PRL 93, 181803 (2004)

Result:

V4 = 0.9749 + 0.0026

nuclear 0¥ 0*
V, 4 = 0.9743 + 0.0002




CURRENT STATUS OF V,, — 2009
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CALCULATED CORRECTIONS TO 0*—0*"DECAYS

Ft=1t (1+5:)[1- (5 - 8ys)] = 2G (I: + Ay)

1. Radiative corrections

8y = o=[9(En) + 8, + 8+ ... ]
271'/, 7

o 7o' Z'o’

Ax = 2-[4 In(m/m,) + In(m/m,) + 2C,,, + ... ]

Born

et v
Order-o axial-vector Y
Ovs < universal photonic 4 4
contributions w
N N
. . ] Dependent
2. Isospin symmetry-breaking corrections on nuclear
structure

Oc Charge-dependent mismatch between
parent and daughter analog states
(members of the same isospin triplet).



ISOSPIN SYMMETRY BREAKING CORRECTIONS

Oc = Ocs + Oc,

Difference in configuration mixing Mismatch in radial wave function be-
between parent and daughter. tween parent and daughter.

e Shell-model calculation with well- e Full-parentage Wood-Saxon wave
established two-body matrix elements. function matched to known binding energy

and charge radius from electron scattering.

® Charge dependence tuned to known
single-particle energies and to meas- S Compared with Hartree-Fock calculation
ured IMME coefficients. matched to known binding energy.

® Results also adjusted to measured 0° /@ Core states included based on
state energies. measured spectroscopic factors.

0.01-0.3 % 04-1.5%

Can these conditions be met for all cases?

10 < A <38 €4
42 < A <54
A > 062
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ISOSPIN SYMMETRY BREAKING CORRECTIONS

Oc = Ocs + Oc,

Difference in configuration mixing Mismatch in radial wave function be-
between parent and daughter. tween parent and daughter.
e Shell-model calculation with well- P e Full-parentage Wood-Saxon wave

established two-body matrix elements. ® function matched to known binding energy
and charge radius from electron scattering.

® Charge dependence tuned to known

single-particle energies and to meas- S Compared with Hartree-Fock calculation

ured IMME coefficients. matched to known binding energy.
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ISOSPIN SYMMETRY BREAKING CORRECTIONS

p—
80 — 601 + 8c:2
Difference in configuration mixing Mismatch in radial wave function be-
between parent and daughter. tween parent and daughter.

Experimental control for 6., v/
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Experimental Calculation
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ISOSPIN SYMMETRY BREAKING CORRECTIONS

Oc = Ocs + Oc,

Difference in configuration mixing Mismatch in radial wave function be-
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ISOSPIN SYMMETRY BREAKING CORRECTIONS

p—
60 — 601 + 8c:2
Difference in configuration mixing Mismatch in radial wave function be-
between parent and daughter. tween parent and daughter.

Experimental control for 5., v/
Experimental control for 5, v
Theoretical control for5, Vv

Ab initio shell model calculation up to 8ho
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max

o 012 0"1—-0"1 _
> Full 5. estimated by
v 008 perturbation theory: 0.19%

Our result: 6, = 0.18(2)%




TESTING 6. CALCULATIONS AGAINST CVC EXPECTATIONS
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TESTING 6. CALCULATIONS
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TESTING 6. CALCULATIONS
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CURRENT DIRECTION OF NUCLEAR EXPERIMENTS
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SUMMARY AND OUTLOOK

1. Analysis of superallowed 0%+ 0*nuclear  decay is shown
to confirm CVC and thus yield V , = 0.97425(22).

2. The three other experimental methods for determining V_,

yield consistent results, but are less precise by a factor
of 8 or more.

. The current value for V_,, when combined with V__ and
V ., satisfies CKM unitarity to 0.06%.

. The largest contribution to the V _, uncertainty is from the

inner radiative correction. Isospin symmetry-breaking
corrections in nuclei are the second largest.

. These symmetry-breaking corrections can be tested by
requiring consistency among 13 known transitions (CVC).
Standard corrections pass the test; a few others do too.

. They can be further tested and improved by higher
experimental precision and by new transitions from
T,= -1 parents.






