SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 < >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$ t = partial half-life: $f(t_{1/2}, BR)$ G_v = vector coupling constant < > = Fermi matrix element

SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 < >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$ t = partial half-life: $f(t_{1/2}, BR)$ G_v = vector coupling constant < > = Fermi matrix element

INCLUDING RADIATIVE AND ISOSPIN-SYMMETRY-BREAKING CORRECTIONS

THEORETICAL UNCERTAINTIES 0.05 - 0.10%

WHAT CAN WE LEARN?

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$\mathcal{T}t = ft(1 + i_{R})[1 - (i_{C} - i_{NS})] = \frac{K}{2G_{V}^{2}(1 + i_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

Validate the correction terms

Test for presence of a Scalar current

7*t* values constant

WITH CVC VERIFIED

WHAT CAN WE LEARN?

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$\mathcal{T}t = ft(1 + i_{R})[1 - (i_{C} - i_{NS})] = \frac{K}{2G_{V}^{2}(1 + i_{R})}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC) Validate the correction terms Test for presence of

WITH CVC VERIFIED

a Scalar current

Obtain precise F PRIOR Determine SIBLE ATISFIED T + Determine SIBLE ATISFIED T + NUV POONS SATISFIED T + ONUV POONS SATISFIED T + ONUV POONS SATISFIED T + ONUV POONS SATISFIED T +

 $V_{ud}^{2} = G_{v}^{2}/G^{2}$

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

R

CKM MATRIX AND UNITARITY

CKM MATRIX AND UNITARITY

PRECISION REQUIRED FROM EXPERIMENT

$$7t = ft(1 + '_{R})[1 - (_{C} - _{NS})] = \frac{K}{2G_{V}^{2}(1 + _{R})}$$

GUIDELINES FOR PRECISION MEASUREMENTS

- Experimental apparatus should be as simple as possible.
- All experimental parameters must be under control and testable.
- Experimental equipment should be dedicated only to this measurement.
- Calibration is often the most important part of the measurement.
- Tests for sources of systematic error must dominate data acquisition.
- Redundancy is desirable in both measurement and analysis.
- No inconsistencies can be overlooked.
- A complete error budget is the most important part of the result.

REQUIREMENTS FOR PRECISE HALF-LIFE MEASUREMENT

IMPORTANT FEATURES

- Extremely high source purity -- separation by Z/A and range.
- Very low background
- Rapid transport (130 ms) to shielded counting position.
- Dominant dead-time, fixed and measured.

- Repeated measurements under different experimental conditions.
- Decay data stored cycle-by-cycle so actual instantaneous rate can be used in analysis.
- Precise statistical procedures used, including simultaneous fit to many cycles with single half-life.

BRANCHING-RATIO MEASUREMENTS

HPGe DETECTOR CALIBRATION

Commercial standard sources:

Relative intensities not known in any case to better than 0.4%.

Source activity (absolute intensity) can be specified to 2-5%; rarely to 1%.

For higher precision:

Source activity for certain cases can be measured to 0.1% by 4 coincidence counting; in our case ⁶⁰Co at PTB Lab. ←

Use clean -ray cascades; home-made sources.

Combine Monte Carlo calculations with measured points.

KEY RADIOACTIVE SOURCES

EG&G ORTEC Gamma-X HPGe

DIMENSION

NOMINAL

Crystal radius, R	34.95 mm
Crystal active length, $L - t_{f} - t_{b}$	77.7 mm
Cap face to crystal distance, D	5.6 mm
Hole radius, r	5.8 mm
Hole depth, d	69.7 mm
Depth internal (Li) dead layer, t ₁	>1 mm
Depth front dead layer, t _f	>0.3 m

X-ray picture of crystal

EG&G ORTEC Gamma-X HPGe

X-ray picture of crystal

Crystal side-scan

EG&G ORTEC Gamma-X HPGe

X-ray picture of crystal

Crystal side-scan

Distance ratio for ⁵⁷Co

EG&G ORTEC Gamma-X HPGe

X-ray picture of crystal

Crystal side-scan

Distance ratio for ⁵⁷Co

Fitted for energy dependence

DETECTOR EFFICIENCY 50 keV < E < 1.4 MeV

Source measurements

10 sources recorded -

4 key sources, 3 locally made, have pure cascades

⁶⁰Co source from PTB with activity known to ± 0.1%

⁶⁰Co
¹⁰⁹Cd
⁸⁸Y
^{108m}Ag
^{120m}Sb
¹³⁴Cs
¹³⁷Cs
^{180m}Hf
⁴⁸Cr
¹³³Ba

DETECTOR EFFICIENCY 50 keV < E < 1.4 MeV

●⁶⁰Co

■ ¹⁰⁹Cd

◆^{108m}Ag

● ^{120m} Sb

O¹³⁴Cs

■ ¹³⁷Cs

♦⁴⁸Cr

● ¹³³ Ba

▲^{180m}Hf

A88Y

Source measurements

vs unscaled Monte Carlo calculations (CYLTRAN)

Physical properties and location of HPGe crystal measured precisely

10 sources recorded -

4 key sources, 3 locally made, have pure cascades

⁶⁰Co source from PTB with activity known to ± 0.1%

DETECTOR CHARACTERIZATION - DETAILS

Efficiency extended up to 3.5 MeV

Helmer et al., Appl. Rad. Isot. 60, 173 (2004).

DETECTOR CHARACTERIZATION - DETAILS

BETA-DECAY BRANCHING OF ³⁴Ar

BETA-DECAY BRANCHING OF ³⁴Ar

BETA-DECAY BRANCHING OF ³⁴Ar

BRANCHING-RATIO RESULTS

Where no ground-state decay occurs, a -ray spectrum and relative efficiencies are enough to obtain branching ratios to $\pm 0.2\%$.

Hardy et al., PRL 91, 082501 (2003).

Where superallowed branch feeds the ground state, we measure the other branching ratios to $\pm 0.2\%$ and subtract them from 100%. In favorable cases (like ³⁴Ar) the result can be good to $\pm 0.01\%$.

PENNING TRAP Q_{EC}-VALUE MEASUREMENTS

PENNING TRAP Q_{EC}-VALUE MEASUREMENTS

IGISOL System

Or for the full Penning trap Q-value story: Tommi Eronen, Jyvaskyla Research Report No. 12/2008 (Thesis)